SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Master
1.6 Program of study / Qualification	Data Science / Master
1.7 Form of education	Full time

2. Data about the subject

2.1 Subject name	Ai	rchitectui	tures of Information Systems Subject code 7.20						
2.2 Course responsible / lecturer				Prof.dr.eng. Dînşoreanu Mihaela - Mihaela.Dinsoreanu@cs.utcluj.ro					
2.3 Teachers in charge of seminars / As.drd.ing. Bogdan Bindea - bogdan.bindea@cs.utcluj.ro Laboratory / project									
2.4 Year of study	ı	1 1/3 260062161 1 / 1			2.6 Type of assessment (E verification)	- exam, C - colloqu	ium, V –	E	
		formative category: DA – advanced, DS – speciality, DC – complementary					ary	DA	
2.7 Subject category	Opti	onality: [OI – imp	osed	, DO – optional (alternative), DF – optional (fre	ee choice)	DO	

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars	-	Laboratory	1	Project	-
3.2 Number of hours per semester	42	of which:	Course	28	Seminars	-	Laboratory	14	Project	-
3.3 Individual study:	3.3 Individual study:									
(a) Manual, lecture material and notes, bibliography							20			
(b) Supplementary study in the library, online and in the field							20			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring								5		
(e) Exams and tests							3			
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4)										

3.6 Number of credit points

4. Pre-requisites (where appropriate)					
4.1 Curriculum Software Design					
4.2 Competence Design Patterns, Software architectures					

5. Requirements (where appropriate)

5.1. For the course	Attending min 50% of the lectures to be admitted to take the final exam
5.2. For the applications	Compulsory attendance of 100% to be admitted to take the final exam

6. Specific competence

o. specific	competence
	analyse big data
	analyse business processes
	analyse decentralised applications
	build predictive models
	create data models
	 define software architecture
	 define technical requirements
	 design cloud architecture
	 develop software prototype
	 develop with cloud services
	interpret technical requirements
	 manage cloud data and storage
Professional competences	 oversee development of software
ten	perform data cleansing
.edu	perform data mining
πo	 perform scientific research
a	provide technical documentation
io	 use data processing techniques
ess	use software design patterns
rof	use software libraries
-	 utilise computer-aided software engineering tools
9	utilise machine learning
	The graduate:
ces	develops an analytical approach
ss ten	takes a proactive approach
Cross	develops strategies to solve problems
6.2 Cross competences	is open minded
9	 coordinates engineering teams

7. Expected Learning Outcomes

	The student has knowledge of:
	cloud technologies
	computer science
	data analytics
	data models
	data storage
	data warehouse
ge	database management systems (DBMS)
Knowledge	digital data processing
ŏ	unstructured data
~	

	The student is able to:
	create data sets
	design databases in the cloud
	develop data processing applications
	establish data processes
	implement data warehousing techniques
	manage ICT data architecture
	manage data
	manage quantitative data
	manage research data
	perform dimensionality reduction
	process data
	store digital data and systems
	use data processing techniques
10	use databases
Skills	analyse pipeline database information
S	create data models
Ses >	The student has the ability to work independently in order to:
Eti L	develop an analytical approach
sibi	take a proactive approach
Responsibilities and autonomy	develop strategies to solve problems
Respand	be open-minded
a 22	coordinate engineering teams

8. Discipline objective (as results from the key competences gained)

8.1 General objective	The main objective of this discipline is to provide specific information and to prepare students for designing and building solutions based on cloud native data, machine learning platforms and multicloud tools.
8.2 Specific objectives	 To achieve these general objectives, students will learn how to: Design modern and secure cloud native or hybrid data analytics and machine learning platform Consolidate enterprise data in a governed, scalable, and resilient data platform Democratize access to enterprise data and govern how business teams extract insights and build AI/ML capabilities Use streaming pipelines to enable decisions making in real time Build an MLOps platform to move to a predictive and prescriptive analytics approach

9. Contents

9.1 Lectures	Hours	Teaching methods	Notes
Introduction to Data Lifecycle	2		
Designing Data architectures – Principles, Concepts, Technologies	2		
Cloud Architectures – Apache Spark	2		
Architecting Data Lakes	2		
Enterprise Data Warehouse	2]	
Converging to Lakehouse	2	Oral presentation,	
Architecting for streaming – Streaming Ingest	2	ppt support,	
Stream analytics	2	discussions	
Multicloud and edge computing	2		
ML application architectures	2	1	
ML platform architectures	2	1	
MLOps	2]	
Final review	2	1	

Project Presentations 2	2		
-------------------------	---	--	--

Bibliography:

- 1. Marco Tranquillin, Valliappa Lakshmanan, Firat Tekiner, Architecting Data and Machine Learning Platforms, 2023, ISBN: 9781098151614
- 2. David Ping, The Machine Learning Solutions Architect Handbook: Create machine learning platforms to run solutions in an enterprise setting, 2022, ISBN: 978-1801072168
- 3. Joe Reis, Matt Housley, Fundamentals of Data Engineering: Plan and Build Robust Data Systems, 2022, ISBN: 9781098108304

9.2 Applications - Seminars / Laboratory / Project	Hours	Teaching methods	Notes
Data environment setup	1		
Data modelling	1		
Cloud Apache Spark	1		
Data lakes	1		
Data warehouse	1		
Lakehouse	1		
Streaming environment setup	1	Oral presentations,	
Stream analytics	1	hands-on lab, discussions	
Multicloud and edge computing	1	413643310113	
ML application architecture	1		
ML platform architecture	1		
Final review and discussions	1		
Final review	1		
Project presentations	1		

Bibliography:

- 1. Marco Tranquillin, Valliappa Lakshmanan, Firat Tekiner, Architecting Data and Machine Learning Platforms, 2023, ISBN: 9781098151614
- 2. David Ping, The Machine Learning Solutions Architect Handbook: Create machine learning platforms to run solutions in an enterprise setting, 2022, ISBN: 978-1801072168
- 3. Joe Reis, Matt Housley, Fundamentals of Data Engineering: Plan and Build Robust Data Systems, 2022, ISBN: 9781098108304

10. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

11. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	The ability to solve domain specific problems Attendance, (inter)activity during class hours	Exam - summative, interaction - continuous	50%	
Seminar	-	-	-	
Laboratory	Lab tasks completion Attendance	Lab assignments - continuous	50%	
Project	-	-	-	
Minimum standard of performance: Lab grade >=5, Exam grade >=5				

Date of filling in: Responsible Title First name Last name Signature	Date of filling in:	Responsible	Title First name Last name	Signature
--	---------------------	-------------	----------------------------	-----------

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

01.09.2025 Course		Prof.dr.eng. Mihaela DÎNŞOREANU	
	Applications	As.drd.eng. Bogdan Bindea	

Date of approval in the department 17.09.2025	Head of department, Prof.dr.eng. Rodica Potolea	
Date of approval in the Faculty Council	Dean,	
19.09.2025	Prof.dr.eng. Vlad Muresan	