SYLLABUS # 1. Data about the program of study | 1.1 Institution | The Technical University of Cluj-Napoca | |--------------------------------------|---| | 1.2 Faculty | Faculty of Automation and Computer Science | | 1.3 Department | Computer Science | | 1.4 Field of study | Computer Science and Information Technology | | 1.5 Cycle of study | Bachelor of Science | | 1.6 Program of study / Qualification | Computer science / Engineer | | 1.7 Form of education | Full time | | 1.8 Subject code | 6. | ## 2. Data about the subject | 2.1 Subject name | | | Physic. | Physics | | | | | |--|--------|-----------|---|---|-------------------------|----|--|--| | 2.2 Course responsible/led | cturer | | Prof. dr. fiz. Fechete Radu - Radu.FECHETE@phys.utcluj.ro | | | | | | | 2.3 Teachers in charge of slaboratory / project | semin | ars / | Lect. dr. Corpodean Dumitrița - Dumitrita.MOLDOVAN@phys.utcluj.ro | | | | | | | 2.4 Year of study | I | 2.5 Sem | ester | ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) | | С | | | | 2.7 Subject category $DF - fundamentală, DD - în domeniu, DS - de specialitate, DC - complementară$ $DI - Impusă, DOp - opțională, DFac - facultativă$ | | DF | | | | | | | | | | Impusă, I | DOp – o | pțion | ală, DFac – facultativă | DI | | | #### 3. Estimated total time | 3.1 Number of hours per week | 3 | of which: | Course | 2 | Seminars | - | Laboratory | 1 | Project | - | |--|------|--------------|---------|----|----------|---|------------|----|---------|----| | 3.2 Number of hours per semester | 42 | of which: | Course | 28 | Seminars | - | Laboratory | 14 | Project | - | | 3.3 Individual study: | | | | | | | | | | | | (a) Manual, lecture material a | nd n | otes, biblio | graphy | | | | | | | 16 | | (b) Supplementary study in the library, online and in the field | | | | | | | 10 | | | | | (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays | | | | | | | 14 | | | | | (d) Tutoring | | | | | | | | 10 | | | | (e) Exams and tests | | | | | | | 3 | | | | | (f) Other activities: | | | | | | | 5 | | | | | 3.4 Total hours of individual study (| suma | ı (3.3(a)3. | .3(f))) | | 58 | | | | | | | 3.5 Total hours per semester (3.2+3 | .4) | | | | 100 | | | | | | ## 4. Pre-requisites (where appropriate) | 4.1 Curriculum | Good knowledge in high school physics | |----------------|--| | | Good knowledge in high school mathematics | | 4.2 Competence | Some knowledge in operating computers (Word, Power Point, Excel, HTML, | | | JavaScript). | ## 5. Requirements (where appropriate) | 5.1. For the course | N/A | |---------------------------|-----| | 5.2. For the applications | N/A | ## 6. Specific competence 3.6 Number of credit points | 6.1 Professional competences | The students will be able to: | |------------------------------|--| | | Manipulate the main physical quantities and measurement unit by using | | | the fundamental physical laws characteristic to the studied phenomena | | | during the solving of the home work problems (the seminar is missing). | | | Use the measurement devices during the laboratory time, like: ammeter, voltmeter, ohmmeter, thermometer, thermocouple, spectroscope, microscope, luxmeter. Evaluate the measurement errors, the absolute and the relative errors. To define and apply some basics concepts, physically principles and theory applied to computer science and engineering. To identify and analyze specific problems and to elaborate strategies to solve them. To be able to identify diverse physical systems, to describe their properties and relations/interactions between the system components. | |-----------------------|--| | 6.2 Cross competences | The students will be able to: Draw graphics of the variation of a specific quantity function of various parameters which are measured experimentally. Plot the graphics using computer scientific software like Origin. Operate with units with different order of magnitude and with the physical constants Write a paper into a scientifically form using a MS Word template. | 7. Discipline objective (as results from the key competences gained) | 7. Discipline objective (as i | | |-------------------------------|--| | 7.1 General objective | Introduction of the most important physical quantities that are encountered | | | in automation engineering. | | | Introduction of the main laws of physics that play a central role in | | | automation engineering applications. | | 7.2 Specific objectives | Understanding of the most important laws of classical mechanics | | | Knowledge of the oscillatory and wave phenomena | | | Knowledge of the sound characteristics and transfer phenomena | | | • Knowledge of the electrical, magnetically and electromagnetic phenomena. | | | Knowledge of the quantum mechanical phenomena. | | | The ability to document alone in a given scientific problem using the books | | | library and the Internet. | | | The ability to elaborate and to present a report on a given scientific problem | | | The ability to represent graphically the physical quantities. | | | The ability to use commercial computer programs for interpretation of the | | | experimental data. | | | The ability to solve a given physical problem and to express it in a | | | mathematical form. | | | The ability to work in a team for solving real physical problems | #### 8. Contents | 8.1 Lectures | Hours | Teaching methods | Notes | |---|-------|---|-------| | C1. Introduction in Physics. Fundamental and derivate physical quantities and their measurement units. Basics of kinematics: | 2 | | | | C2. Elements of motion (reference system, trajectory, space). Velocity. Linear motions with constant velocity. Acceleration. Linear motion with constant acceleration. Kinematics: Curvilinear motions (trajectory, velocity and acceleration). | 2 | Didactic discourse,
exposure and
explanation of curricular
subjects, narrative-story
related to the physics | | | C3. Circular motion (angle, circular velocity, circular acceleration, law of motion with uniform angular velocity, law of motion with uniform angular acceleration). Relations between linear and circular quantities. Specific measurement units. | 2 | history and association with real life facts. Didactic conversation (heuristics and catechetic) in which the | | | C4. Dynamics: 1 st , 2 nd and 3 rd principles of dynamics. Inertial mass. Force. Linear momentum. Mechanic work. Power. Energy (kinetic, potential, total). | 2 | students are involved. | | | C5. Momentum of force. Angular momentum. Conservations laws of: linear momentum, kinetically momentum, energy. | 2 | | |---|---|--| | C6. Oscillatory motion: Linearly harmonically oscillator. Dumped oscillations. Forced oscillations, resonance. | 2 | | | C7. Waves. Wave function. Differential equation, Characteristic phenomena: reflection, refraction, interference, diffraction. Standing waves. | 2 | Demonstration of | | C8. Acoustics: Definition. Sound sources. Fundamental sound and superior harmonics. Sounds quality. Closed chambers acoustics, sound reverberation, reverberation time. | 2 | physical laws in mathematical form and using objects to | | C9. Electricity. Introduction. Electric charge. Coulombian Force. Electric Field. Electric Field intensity. Electric Flux. Gauss law for the electric field. Electric field work. | 2 | represents the physical phenomena at reduced scale. Demonstration with | | C10. Electric current. Definition. Electric current intensity. Density of the electric current. Ohm's law. Electrons in solids. Electrically conductibility. Elements of electric circuit. | 2 | actions performed by
students which are
asked to: extract from | | C11. Magnetism: Magnetic field. Sources of the magnetic field. Lorentz force. | 2 | problem the significant data, to observe, identify and | | C12. Magnetic flux. Gauss law for the magnetic field. Element of current. Magnetic force (Laplace force). Biot-Savart law. | 2 | classifyphysical laws and types of motions. | | C13. Magnetic field produced by a liner conductor. Magnetic field produced by a loop. Ampere's law. Electromagnetic induction. Faraday's law. | 2 | | | C14. Maxwell's equations (differential and integral forms). Electromagnetic waves: Maxwell's equations without sources, velocity, transversally, intensity, and range | 2 | | Bibliography: In UTC-N library - 1. R. Fechete, Fundamental physics for engineers, course notes. - 2. E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Napoca 2004 - 3. R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008. - 4. Simona Nicoara, Codruta Badea, Radu Fechete, Problems and Applications of PHYSICS for Students of Engineering, - U.T. PRESS, Cluj Napoca, ISBN 978-606-737-619-7, pg. 154, (2022). - 5. I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005. - 6. I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999. Multimedia teaching aids - 7. Microsoft Encarta Encyclopedia. - 8. Encyclopedia Britannica. | 8.2 Applications - Seminars / Laboratory / Project | Hours | Teaching methods | Notes | |--|-------|--|-------| | L1. Work Protection. The study of thermoelectrically effect. | 2 | Heuristic discovery | | | L2. Longitudinal and transverse standing waves. | 2 | In laboratory of some | | | L3. Optical spectroscopy. | 2 | physical phenomena. Problematization | | | L4. The study of photoelectric effect. | 2 | (problematize) | | | L5. The determination of the energy gap of a semiconductor. | 2 | presentations of laws and | | | L6. The study of Hall Effect. | 2 | principles of general | | | L7. Polarizations of light. | 2 | physics with situations
from real
life, and situations from
the future work of
students. | | #### Bibliography: - 1. R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara, I. Coroiu, C. Badea, E. Culea, I. Cosma, N. Serban, Fizica: Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014). - 2. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/ThermoelectricEffect/ - 3. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/StandingWaves/ - 4. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/AtomicSpectra/ - 5. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PhotoelectricEffect/ - 6. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/HallEffect/ - 7. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/EnergyGap/ - 8. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PolarizationOfLight/ - 9. http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng href="http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng">http://www.phys.utcluj.ro/resurs # 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field #### 10. Evaluation | Activity type | Assessment criteria | Assessment methods | Weight in the final grade | |---------------|---|--|---------------------------| | Course | Theoretical Knowledges accumulated at class, individual study | Written test (9 questions, each one 1 p) | 70% | | Seminar | - | - | - | | Laboratory | Practical knowledges (abilities) accumulated in TUCN Laboratory + Individual study (essays on a general Physics subject or practical) | Essay, Practical Presentation, PPT presentation, written Problems, Numeric simulations of physical processes. On Line Assessment | 30% | | Project | - | - | - | Minimum standard of performance: 2.75/10 points (2.75 mark + (2.75 student – 1 default = 1.5) total 4.5 rounded to 5) + all laboratories | Date of filling in: | Responsible | Title, First name Last name | Signature | |---------------------|--------------|---------------------------------------|-----------| | 26.02.2025 | Course | Prof.dr.fiz. Radu FECHETE | | | | Applications | Lect.dr.eng. fiz. Dumitrita CORPODEAN | | | | | | | | Date of approval in the department | Head of Department, | | |---|------------------------------|--| | | Prof.dr. ing. Rodica Potolea | | | | | | | Date of approval in the Faculty Council | Dean, | | | bute of approval in the racalty council | Prof.dr.ing. Vlad Mureşan | | | | | | $[^]st$ Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.