SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer Science / Engineer
1.7 Form of education	Full time
1.8 Subject code	4.

2. Data about the subject

2.1 Subject name				Logic Design				
2.2 Course responsible / lecturer			Prof. dr. eng. Creţ Octavian - Octavian.Cret@cs.utcluj.ro					
				Lect. dr. eng. Lişma	n Dragoș-Florin	- Dra	gos.Lisman@cs.ut	cluj.ro
2.3 Teachers in charge of applications			Lect. dr. eng. Lişma	n Dragoș-Florin	- Dra	gos.Lisman@cs.ut	cluj.ro	
2.4 Year of study	ı	2.5 Semester	1	2.6 Assessment	exam	2.7	Subject category	DID/OB

3. Estimated total time

Sem.	Subject name	Lectur e	Appli	catio	ns	Lecture	Appl	licati	ons		ridual udy	Total	Credit
		[ho	urs / v	week	.]	[hours / semester			ster]			
			S	L	Р		S	L	Р				
1 Log	ic Design	2	-	2	-	28	-	28	-	4	14	100	5
3.1 Nu	umber of hours per week	4	3.2)	of w	hich, cou	rse		2	3.3	appl	ications	2
3.4 Total hours in the teaching plan		100	3.5	;	of w	of which, course 28 3.6 application		ications	28				
а	a) Individual study						Hours						
b) Manual, lecture material and notes, bibliography						15							
c) Supplementary study in the library, online and in the field						7							
d) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						7							
e) Tutoring					6								
f) Exams and tests						9							
8) Other activities												0
3.7 To	tal hours of individual study		44										

4. Pre-requisites (where appropriate)

3.8 Total hours per semester

3.9 Number of credit points

4.1 Curriculum	• N/A
4.2 Competence	Mathematics (Algebra), Physics (electricity)

100

4

5. Requirements (where appropriate)

5.1 For the course	A minimum of 80% course attendance rate is mandatory for being admitted to the final exam
5.2 For the applications	Preliminary preparation of summaries from the indicated bibliography (laboratory textbook)

6. Specific competences

o. specific competences	
6.1 Professional competences	C1 - Operating with basic Mathematical, Engineering and Computer Science concepts
	 C1.1 - Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems
	 C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
	C1.3 - Building models for various components of computing systems
	 C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems
	 C1.5 - Providing a theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	The main objective of this discipline is to give to the students the bases of Logic Design, in order to make them able to analyze, design and implement any digital system.
7.2 Specific objectives	 To reach this goal, students will learn to: Analyze and synthesize combinational logic systems; Analyze and synthesize synchronous and asynchronous sequential machines; Apply digital system design principles and descriptive techniques; Utilize programmable devices such as FPGAs and PLDs to implement digital systems; Understand timing issues in digital systems and study these via digital circuit simulation.

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
Introduction. Number systems and codes, errors		
Number representation systems. Binary arithmetic		
Boolean Algebra. Boolean functions. Logic gates. Digital systems and functions representation		
Methods for minimizing Boolean functions and systems of functions		
Combinational logic circuits (CLCs) analysis and design (synthesis). SSI and MSI CLCs.		
Methods for designing digital systems with SSI, MSI, LSI and VLSI circuits. Combinational Hazard.	Presentations, discussions	N/A
Sequential logic circuits. Latches and Flip-Flops.	uiscussions	
Flip-Flops applications: frequency dividers, counters		
Flip-Flops applications: data registers, converters, memories		
Methods for designing digital systems using Flip-Flops		
Methods for designing digital systems using memories, multiplexers, decoders, counters		
Methods for designing sequential synchronous systems		
Methods for designing digital systems using programmable devices (I)		
Methods for designing digital systems using programmable devices (II)		

Bibliography:

- 1. Contemporary Logic Design, Randy H. Katz, Benjamin Cunnings / Addison Wesley Publishing Co., 1993.
- 2. Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.
- 3. FPGA-based System Design, Wayne Wolf, PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com ISBN: 0-13-142461-0.

8.2. Applications (Laboratory)	Teaching methods	Notes		
Basic Logic Circuits	Practical work			
ActiveHDL Schematic Editor and Simulator (I)	on test boards,			
ActiveHDL Schematic Editor and Simulator (II)	FPGA boards,	N/A		
Combinational Logic Circuits (I)	specialized software,			
Combinational Logic Circuits (II) – MSI circuits	Software,			
Combinational Logic Circuits (III) – Complex circuits				
Synthesis of Combinatorial Logic Circuits using Programmable Logic Devices				
Flip-flops	blackboard			
Counters (I)	presentations, supplemental			
Counters (II)	explanations and			
Registers and Shift Registers	·			
The XILINX FPGA Family				
Synthesis of Sequential Logic Circuits using FPGA Devices				
Laboratory test				
Diblio secolo u	<u> </u>			

Bibliography:

1. Analiza și sinteza dispozitivelor numerice, Îndrumător de laborator, Ediția a-3-a, L. Văcariu, O. Creţ, A. Neţin, Ed. U.T. Press, Cluj- Napoca, 2009.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD- based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Problems solving abilities Presence, (Inter)activity	Written Exam	70%
Applications	Problems solving abilities	(face to face or using TEAMS platform, if necessary)	30%
	Presence, (Inter)activity		

Minimum standard of performance:

- Conditions for participating in the final Written exam: Applications grade ≥ 5 AND a minimum of 80% course attendance rate;
- Conditions for passing the exam: Written exam grade ≥ 5;
- · Modeling and solving typical Logic Design problems using the domain-specific formal apparatus.

Date of filling in: 26.02.2025	Responsible	Title, First name Last name	Signature
	Course	Prof.dr.eng. Octavian CREŢ	
		Lect.dr.eng. Dragoş-Florin LIŞMAN	
	Applications	Lect.dr.eng. Dragoş-Florin LIŞMAN	

Date of approval in the department	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof.dr.eng. Vlad Mureşan