
1/5

SYLLABUS

1. Data about the program of study

 1.1 Institution The Technical University of Cluj-Napoca
 1.2 Faculty Faculty of Automation and Computer Science
 1.3 Department Computer Science
 1.4 Field of study Computer Science and Information Technology
 1.5 Cycle of study Bachelor of Science
 1.6 Program of study / Qualification Computer science / Engineer
 1.7 Form of education Full time
 1.8 Subject code 48.2

2. Data about the subject
 2.1 Subject name Translator design
 2.2 Course responsible / lecturer Assoc. prof. dr. eng. Chifu Emil-Ştefan - emil.chifu@cs.utcluj.ro
 2.3 Teachers in charge of seminars /
 laboratory / project

Assoc. prof. dr. eng. Chifu Emil-Ştefan - emil.chifu@cs.utcluj.ro

 2.4 Year of study IV 2.5 Semester 1 2.6 Type of assessment (E - exam, C - colloquium, V -
verification) E

 2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DS
DI – Impusă, DOp – opțională, DFac – facultativă DOp

3. Estimated total time
 3.1 Number of hours per week 5 of which: Course 2 Seminars - Laboratory 2 Project 1
 3.2 Number of hours per semester 70 of which: Course 28 Seminars - Laboratory 28 Project 14
 3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 25
(b) Supplementary study in the library, online and in the field 15
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 27
(d) Tutoring 10
(e) Exams and tests 3
(f) Other activities: 0

 3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 80
 3.5 Total hours per semester (3.2+3.4) 150
 3.6 Number of credit points 6

4. Pre-requisites (where appropriate)
4.1 Curriculum Formal Languages and Translators, Computer Programming, Data Structures and

Algorithms
4.2 Competence - Basic knowledge of programming and data structures (preferably in the C

and Java languages)
- Concepts of generative grammars and formal languages
- To know the basic principles in the design of interpretors and translators
for languages artificial
- Basic knowledge of relational databases and web applications

5. Requirements (where appropriate)
5.1. For the course N/A
5.2. For the applications Computers, specific software

mailto:emil.chifu@cs.utcluj.ro
mailto:emil.chifu@cs.utcluj.ro

2/5

6. Specific competence
6.1 Professional competences C4 - Improving the performances of the hardware, software and communication

systems (2 credits)
• C4.1 - Identifying and describing the defining elements of the performances

of the hardware, software and communication systems
• C4.2 - Explaining the interaction of the factors that determine the

performances of the hardware, software and communication systems
• C4.3 - Applying the fundamental methods and principles for increasing the

performances of the hardware, software and communication systems
• C4.4 - Choosing the criteria and evaluation methods of the performances of

the hardware, software and communication systems
• C4.5 - Developing professional solutions for hardware, software

and communication systems based on performance optimization
C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of
hardware, software and communication systems (2 credits)

• C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,
security and the computing system’s interaction with the environment and
the human operator

• C5.2 - Using interdisciplinary knowledge for adapting the computing system
to the specific requirements of the application field

• C5.3 - Using fundamental principles and methods for ensuring the security, the
safety and ease of exploitation of the computing systems

• C5.4 - Proper utilization of the quality, safety and security standards in the
field of information processing

• C5.5 - Creating a project including the problem’s identification and analysis, its
design and development, also proving an understanding of the basic quality
requirements

C6 - Designing intelligent systems (1 credit)
• C6.1 - Describing the components of intelligent systems
• C6.2 - Using domain-specific tools for explaining and understanding

the functioning of intelligent systems
• C6.3 - Applying the fundamental methods and principles
• for specifying solutions for typical problems using intelligent systems
• C6.4 - Choosing the criteria and evaluation methods for the quality,

performances and limitations of intelligent systems
• C6.5 - Developing and implementing professional projects for intelligent

systems
6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective • To know the phases of programming language translators: lexical analysis,
syntactic analysis, and code generation.

• To master the phases of Natural Language Processing and the BERT language
models.

7.2 Specific objectives • To know the classes of languages for which efficient translators and
interpreters can be implemented.

• To know the rules for processing typical statements for interpreters.
• By using the Prolog language, to build DCG parsers for natural language.
• To implement in the NLTK toolkit different phases of natural language

processing.
• To define, train and test natural language text classifiers, by using the

pretrained BERT language models.

3/5

8. Contents
8.1 Lectures Hours Teaching methods Notes
Descriptive tools: extended Backus-Naur form. 2

- The main ideas with
multimedia techniques

- Details and
examples at the
blackboard, in
interaction with the
students
- There are
consultation hours
- Students are invited
to collaborate in
research projects

Regular grammars and finite automata: finite automata, state
diagrams and regular expressions. 2

Context-free grammars and pushdown auromata: examples. 2
Lexical analysis: modules and interfaces (decomposition of the
grammar, lexical analyzer interface), construction of the lexical
analyzer (state diagrams, reserved words method).

2

LL parsers: the LL(1) parsing algorithm for extended BNF grammars. 2
LL parsers: computation of FIRST and FOLLOW sets. 2
LL parsers: examples of recursive-descent applications. 2
Theoretical results concerning the LL(k) and LR(k) grammars. 2
LR parsers: LR(0) states, SLR(1) grammars. 2
LR parsers: LALR(1) grammars. 2
LR parsers: the LALR(1) algorithm. 2
LR parsers: shift-reduce transitions, chain production elimination. 2
LR parsers: LR table compression. 2
Basic concepts of attribute grammars. 2
Bibliography:
1. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
2. I.A. Leţia and E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţă, 1998.
3. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.
8.2 Applications - Seminars / Laboratory / Project Hours Teaching methods Notes
Laboratory
Building recursive-descent parsers from extended
BNF grammars. 2

Brief presentation at
the blackboard (the
teacher), implementing
and testing examples
and exercises on the
computer (the
students)

Recursive-descent (RD) applications: building
abstract syntax trees (AST) for regular expressions. 2

DR applications: code generator for an imperative language, using
AST as intermediate code. Lowering
the arithmetic expressions.

2

Code generator for an imperative language, using
AST as intermediate code. Lowering the loops and the conditional
statements.

2

Definite clause grammars (DCGs) for parsing natural
language. 2

DCG: building parse trees and checking agreement. 2
DCG: dealing with natural language ambiguity.
Checking agreement in the Romanian language. 2

DCG: machine translation. 2
The NLTK toolkit: semantic analysis of natural
language with Lambda calculus. 2

NLTK: subcategorization frames. 2
NLTK: using the FrameNet lexical resourse, semantic
role labeling (SRL). 2

NLTK: discourse representation structures (DRS),
anaphora resolution. 2

NLTK: Dependency grammars and dependency parsers. 2
NLTK: the phases of a natural language processing
pipeline: lemmatizing, part of speech tagging, named entity
recognition, using the WordNet lexical thesaurus.

2

Project

4/5

Numerical encoding of natural language text: bag of
words (BoW), TF-IDF, and bag of n-grams. 2

Brief presentation at
the blackboard (the
teacher), implementing
and testing examples
and exercises on the
computer (the
students)

Sentiment analyzer (classifier) using Logistic
Regression (LR). 2

Document categorization by using Logistic
Regression: training and testing. 2

Text encoding by using Word to Vec (word2vec):
document categorization. 2

Using the pretrained BERT language model:
sentinent analyzer using Logistic Regression. 2
Using BERT: fine-tuning the pre-trained BERT vectors. 2
Using BERT: transfer learning for different
downstream tasks: summarization, machine translation, semantic
role labelling (SRL).

2

Bibliography
1. https://www.cs.utexas.edu/users/novak/lexpaper.htm
2. Online lab manual
3. Hugging Face https://huggingface.co/

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

 It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with
the principles of efficient design and implementation of interpreters and translators for artificial languages. The
syllabus of the course has been discussed with other important universities and companies from Romania, Europe,
and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type Assessment criteria Assessment methods Weight in the
 final grade

Lectures Problem-solving skills
 Attendance, Activity

Gradual evaluation during the lectures, based on a
dialog with the students and their activity at the
blackboard during the lectures
There are consultation hours before the exam, during
which bonuses for the final exam are granted
The final exam is a written exam

44%

Laboratory Problem-solving skills Lab works: 35%

Project Attendance, Activity Gradual evaluation of the activity of students, at
each lab meeting
Bonuses for the final exam are granted
Project lab meetings:

- - Gradual evaluation of the activity of students, at
 each project lab meeting

21%

Minimum standard of performance:
Modelling typical engineering problems using the domain specific formal apparatus. Grade
calculus: 35% lab + 21% project + 44% final exam
Conditions for participating in the final exam: Lab ≥ 5
Conditions for promotion: grade ≥ 5

http://www.cs.utexas.edu/users/novak/lexpaper.htm
https://huggingface.co/

5/5

Date of filling in:
26.02.2025 Responsible Title, First name Last name Signature

Course Assoc. prof. dr. eng. Emil-Ştefan CHIFU

Applications Assoc. prof. dr. eng. Emil-Ştefan CHIFU

Date of approval in the department Head of department,

Prof.dr.eng. Rodica Potolea

Date of approval in the Faculty Council

Dean,
Prof.dr.eng. Vlad Mureșan

