
1/5

SYLLABUS

1. Data about the program of study

1.1 Institution Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Master of Science

1.6 Program of study / Qualification Cybersecurity Engineering / Master

1.7 Form of education Full time

2. Data about the subject

 2.1 Subject name
Programming security mechanisms on the
x86-64 architecture

Subject code 4.20

 2.2 Course responsible / lecturer Prof. dr. eng. Anca Hangan - anca.hangan@cs.utcluj.ro

 2.3 Teachers in charge of seminars /
 Laboratory / project

 Prof. dr. eng. Anca Hangan - anca.hangan@cs.utcluj.ro

 2.4 Year of study I 2.5 Semester 1
 2.6 Type of assessment (E - exam, C - colloquium, V –
 verification)

E

 2.7 Subject category
 Formative category: DA – advanced, DS – speciality, DC – complementary DA

 Optionality: DI – imposed, DO – optional (alternative), DF – optional (free choice) DO

3.Estimated total time

 3.1 Number of hours per week 4 of which: Course 2 Seminar - Laboratory 2 Project -

 3.4 Total hours in the curriculum 56 of which: Course 28 Seminar - Laboratory 28 Project -

 3.7 Individual study:

(a) Manual, lecture material and notes, bibliography 20

(b) Supplementary study in the library, online and in the field 18

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 54

(d) Tutoring 0

(e) Exams and tests 2

(f) Other activities 0

 3.8 Total hours of individual study (sum (3.7(a)…3.7(f))) 94

 3.9 Total hours per semester (3.4+3.8) 150

 3.10 Number of credit points 6

4. Pre-requisites (where appropriate)

4.1 Curriculum Assembly Language Programming, Operating Systems

4.2 Competence Computer Architecture

5. Requirements (where appropriate)

5.1 For the course blackboard, beamer, computers

5.2 For the applications blackboard, beamer, computers

2/5

6. Specific competences

6.1 Professional competences implement ICT risk management
develop information security strategy
perform ICT security testing
manage disaster recovery plans
execute ICT audits
develop contingency plans for emergencies
manage system security
implement ICT recovery system
manage IT security compliances
identify ICT security risks
define security policies
perform risk analysis
provide ICT consulting advice
establish an ICT security prevention plan
implement ICT security policies
ensure information privacy
monitor developments in field of expertise
keep up with the latest information systems solutions

6.2 Cross competences develop an analytical approach

taking a proactive approach

developing strategies to solve problems

being open minded

coordinate engineering teams

7. Expected Learning Outcomes

K
n

o
w

le
d

ge

The student has knowledge of:

• Operating systems

• Computer programming

• Cyber attack counter-measures

• Embedded systems

• Security engineering

• ICT encryption

• ICT security standards

• ICT network security risks

• Cloud technologies

• Ethical hacking principles

• Information security strategy

• Computer forensics

• Risk management

• Security threats

• Attack vectors

• software anomalies

• cyber security

3/5

Sk
ill

s
The student is able to:

• Analyse ICT systems

• Develop ICT device drivers

• Develop an information security strategy

• Define technology strategy

• Debug software

• Use scripting languages for programming

• Perform ICT security testing

• Identify ICT security risks

• Implement ICT security policies

• Define security policies

• Perform risk analysis

• Monitor system performance

• Execute software tests

• Interpret technical texts

• Keep up with the latest information systems solutions

• Utilise computer-aided software engineering (CASE) tools

• Provide user documentation

• Respond to incidents in cloud environments

• Manage IT security compliances

• Solve ICT system problems

R
es

p
o

n
si

b
ili

ti
e

s

an
d

 a
u

to
n

o
m

y
 The student has the ability to work independently in order to:

• develop an analytical approach

• take a proactive approach

• develop strategies to solve problems

• be open minded

• coordinate engineering teams

8. Discipline objectives (as results from the key competences gained)

8.1 General objective

Deeper understanding of the x86-64 architecture from the security perspective,

understanding the low-level mechanisms of an operating system, its components

as well as the basic elements necessary for its development.

8.2 Specific objectives

1. Understanding the x86-64 architecture at the structural and functional level.

2. Understanding the different security mechanisms offered by the x86-64

architecture as well as how to use them within an operating system.

3. Knowing the different low-level components of an operating system;

understanding their role and functionality as well as the relationships

between them.

4. Knowledge of the techniques of designing and implementing the different

components of an operating system.

5. Acquiring experience of programming some hardware components at the

level of hardware-software interface.

9. Contents

9.1. Lecture (syllabus) Hours Teaching methods Notes

Introduction to Hardware-Level Programming and Security 2
Blackboard illustrations

and explanations,

beamer presentations,

discussions, short

challenges e

Computer Architecture - Review 2

Assembly Language and System Programming 2

Firmware and Boot Process 2

Memory Management and Security 2

Hardware Vulnerabilities 2

4/5

Side-Channel Attacks 2

Trusted Execution Environments 2

Hardware Security Features 2

Secure Programming at Low Levels 2

Virtualization and Security 2

Security in Embedded and IoT Systems 2

Emerging Topics in Hardware Security 2

Student presentations 2

Bibliography:

1. Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1-3 (Intel – 2014 – electronic)

2. Operating System Concepts (Silberschatz, Abraham – 2012 – Wiley) (9th ed)
3. Optimizing subroutines in assembly language: An optimization guide for x86 platforms (Fog, Agner – 2013 –

electronic, http://www.agner.org/optimize/)
4. Windows Operating System Internals Curriculum Resource Kit (CRK) (Microsoft – 2006 – electronic, MSDNAA)

5. Presentations (slides) of the course (https://users.utcluj.ro/~sebestyen/cursuri_lab.htm)

6. Development sites for operating system components(e.g. http://wiki.osdev.org/).

9.2 Applications - Seminars / Laboratory / Project Hours Teaching methods Notes

Introduction to the OS starting template used: installation,
compilation, execution and testing

2

 Brief reviews,
 blackboard illustrations
and explanations,
tutorials, roadmaps,
short live demos and
guidance of code
development,
discussions, homework.

Transitioning to long mode. Configuring CPU control structures,
memory spaces and paging for 4 level paging

4

IDT configuration for exception and interrupt handling.
Implementing assembly stubs and C ISR routines for handling
exceptions and interrupts. Dumping the trap frames for debugging.

2

PIC programming for interrupt handling. Programming the PIT and
keyboard and handling their interrupts.

2

Implementing interactive I/O e.g., command interpreter 2

Programming ATA hard drive for PIO access 2

Memory Management: physical, virtual and heap memory
allocators

2

Intel SMP 1.4 trampoline for booting AP processors 2

Implementing a synchronization primitive (spinlock). Updating the
code to use the primitive: display access, doubly link list access, etc

4

SMP threads, context switching, scheduling. Mutex. FPU/SEE
context saving.

4

 Bibliography:

1. Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1-4 (Intel – 2022 – electronic)

2. Operating System Concepts (Silberschatz, Abraham – 2012 – Wiley) (9th ed)
3. Optimizing subroutines in assembly language: An optimization guide for x86 platforms (Fog, Agner – 2013 –

electronic, http://www.agner.org/optimize/)
4. Windows Operating System Internals Curriculum Resource Kit (CRK) (Microsoft – 2006 – electronic, MSDNAA)
5. Several sites dedicated to OS development (e.g. http://wiki.osdev.org/).
6. Several specifications regarding HW interfaces or devices (e.g. ATA, RTC, PIC, ..)

10 Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

This course was designed as a structure and content based on discussions with representatives of companies (e.g.

BitDefender) directly involved in the development of security solutions. This course covers a series of knowledge that is

necessary in developing methods to secure systems at a level close to the physical machine.

http://wiki.osdev.org/
http://www.agner.org/optimize/
http://wiki.osdev.org/

5/5

11. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the final

grade

 Course

Ability to solve domain-specific

problems, attendance, activity

during class

Written exam - summative and
presentation of different subjects
/ paper in the course’s field
during semester time -
continuous.

70%

Laboratory

Ability to solve domain-specific

problems, attendance, activity

during class

Evaluate lab activity.
Evaluate lab assignments
(homework).
Evaluate solutions of problems
given in a final lab exam.

30%

Minimum standard of performance:
Lecture. Attending minimum 50% of lecture classes, to be allowed to take the final examination. Knowledge of the
main protection mechanisms offered by the x86-64 architecture. Knowledge of the main principles of design of
operating systems. Minimum final grade must be 5 for the exam to be considered passed.
Lab. Attending all lab classes (one lab could be recovered during the semester, and one more during re-examination

sessions). The ability to use the acquired knowledge to develop components within an operating system. This kind of

assessment could happen in relation to assignments given during semester or subjects given during the final lab

evaluation.

Minimum laboratory grade 5.

Minimum exam grade 5.

Final grade=Note exams*0.7+Laboratory grade*0.3

Promotion criterion: minimum 5 at the final grade

Date of filling in:
01.09.2025

Responsible Title First name Last name Signature

Course Prof. dr. eng. Anca HÂNGAN

Applications Prof. dr. eng. Anca HÂNGAN

Date of approval in the department
17.09.2025

Head of department,
Prof.dr.eng. Rodica Potolea

Date of approval in the faculty
19.09.2025

Dean,
Prof.dr.eng. Vlad Mureșan

