
1/4

SYLLABUS

1. Data about the program of study

 1.1 Institution The Technical University of Cluj-Napoca
 1.2 Faculty Faculty of Automation and Computer Science
 1.3 Department Computer Science
 1.4 Field of study Computer Science and Information Technology
 1.5 Cycle of study Bachelor of Science
 1.6 Program of study / Qualification Computer science/ Engineer
 1.7 Form of education Full time
 1.8 Subject code 38.

2. Data about the subject

 2.1 Subject name Formal Languages and Translators
 2.2 Course responsible / lecturer Assoc. prof. dr. eng. Chifu Emil Ştefan - emil.chifu@cs.utcluj.ro
 2.3 Teachers in charge of seminars /
 laboratory / project

Assoc. prof. dr. eng. Chifu Emil Ştefan - emil.chifu@cs.utcluj.ro
Assist. drd. eng. Rednic Ana - Ana.Rednic@cs.utcluj.ro

 2.4 Year of study III 2.5 Semester 2 2.6 Type of assessment (E - exam, C - colloquium, V -
verification) E

 2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DD

DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time
 3.1 Number of hours per week 4 of which: Course 2 Seminars - Laboratory 2 Project -
 3.2 Number of hours per semester 56 of which: Course 28 Seminars - Laboratory 28 Project -
 3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 7
(b) Supplementary study in the library, online and in the field 5
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 4
(d) Tutoring
(e) Exams and tests 3
(f) Other activities: 0

 3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 19
 3.5 Total hours per semester (3.2+3.4) 75
 3.6 Number of credit points 3

4. Pre-requisites (where appropriate)

4.1 Curriculum Computer Programming, Data Structures and Algorithms
4.2 Competence Basic knowledge of programming and data structures (preferably in the C

language)

5. Requirements (where appropriate)

5.1. For the course Onsite: Blackboard, Overhead projector, computer
5.2. For the applications Computers, specific software / Teams account

6. Specific competence

6.1 Professional competences C1 – Operating with basic Mathematical, Engineering and Computer Science
concepts (2 credits)

• C1.1 – Recognizing and describing concepts that are specific to the fields
of calculability, complexity, programming paradigms, and modeling

mailto:emil.chifu@cs.utcluj.ro
mailto:emil.chifu@cs.utcluj.ro
mailto:Ana.Rednic@cs.utcluj.ro

2/4

computational and communication systems
• C1.2 – Using specific theories and tools (algorithms, schemes, models,

protocols, etc.) for explaining the structure and the functioning of
hardware, software and communication systems

• C1.3 – Building models for various components of computing systems
• C1.4 – Formal evaluation of the functional and non-functional

characteristics of computing systems
• C1.5 – Providing a theoretical background for the characteristics of the

designed systems
C3 – Problems solving using specific Computer Science and Computer
Engineering tools (2 credits)

• C3.1 – Identifying classes of problems and solving methods that are
specific to computing systems

• C3.2 – Using interdisciplinary knowledge, solution patterns and tools,
making experiments and interpreting their results

• C3.3 – Applying solution patterns using specific engineering tools and
mehodsC3.4 – Comparatively and experimentaly evaluation of the
alternative solutions for performance optimization

• C3.5 – Developing and implementing informatic solutions for
concrete problems

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective - To know the phases, components, and algorithms used by typical
language translators.

- To provide a formal basis for the development of concepts relating to
lexical and syntactic processors in translators.

7.2 Specific objectives - To know the underlying formal models such as finite state automata and
push-down automata, and to understand their connection to language
definition through regular expressions and grammars.

- To understand the relationships between formal descriptions of the
automata in the formal language theory and their practical
implementations as lexical and syntactic analyzers in translators.

- To know the classes of languages for which a deterministic parser can be
implemented.

- To describe the syntax of languages to be implemented by using
grammars and regular expressions.

- To design, develop and test a software project, by utilizing specialized
software tools (parser generators), in order to arrive at a translator for an
artificial language.

- To master and control the phenomena of ambiguity and
nondeterminism (conflicts) which occur when using parser generators
and lexical analyzer generators.

- Introduction to natural language processing methods.

8. Contents
8.1 Lectures Hours Teaching methods Notes
Descriptive tools: strings and rewriting systems, grammars. 2

- The main ideas with
multimedia techniques

Descriptive tools: derivations and parse trees, exttended BNF
notation 2

Regular grammars and finite automata: finite automata. 2

3/4

Regular grammars and finite automata: state diagrams and
regular expressions. 2

- Teaching materials
available in the Teams
platform
- Details and
examples at the
blackboard/ graphics
tablet, in interaction
with the students
- Kahoot tests/ Teams
Forms tests

Context-free grammars and pushdown automata. 2
Top-down analysis and LL(k) grammars: LL(k) grammars, the LL(k)
algorithm 2

Top-down analysis and LL(k) grammars: elimination of left
recursion, left factoring. 2

LL parsers: strong LL(k) grammars, the LL(1) parsing algorithm. 2
LL parsers: the LL(1) parsing algorithm in the interpretive variant,
computation of FIRST and FOLLOW sets. 2

Bottom-up analysis and LR(k) grammars: situations and closure of
a nonterminal, the LR(k) algorithm. 2

Bottom-up analysis and LR(k) grammars: the LR(k) algorithm. 2
LR parsers: the LR(0) parsing algorithm, LR(0) states. 2
Natural language processing: syntactic analysis, semantic
interpretation, representation methods. 2

Natural language processing: neural models for language
representation. 2

Bibliography:
1. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
2. I.A. Leţia and E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţă, 1998.
3. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.
8.2 Applications - Seminars / Laboratory / Project Hours Teaching methods Notes
Lexical analyzer for C. Regular expressions in Python. 2

Brief presentation at
the blackboard (the
teacher), implementing
and testing examples
and exercises on the
computer (the
students)

The generator of lexical analyzers Lex: Lex source, Lex regular
expressions, Lex actions, ambiguous rules, Lex source definitions. 2

Lex generator: left context sensitivity, examples, Lex applications. 2
The bottom-up parser generator Yacc: basic specifications, Yacc
syntax, actions, lexical analysis, how the parser works. 2

Lab test: using Lex. 2
Yacc generator: ambiguity and conflicts, precedence and
associativity, error handling. 2

Yacc generator: support for arbitrary value types, examples. Yacc/
Lex applications: Translator of arithmetic expressions from infix to
postfix.

2

Yacc/ Lex applications: Lisp/C interpreter. 2
Lab test (Using Yacc and Lex) 2
Defining the individual assignment (Implementing a translator by
using the Yacc and Lex generators/ Using neural models for
language representation)

2

Examples of using neural models for representing language/
Deterministic recursive descent parsing of a language operating
on binary trees.

2

Examples of using neural models for representing language/
Deterministic recursive descent parsing of a language operating
on binary lists and polynomials.

2

Implementing the assignment. 2
Final evaluation of the individual assignment. 2

4/4

Bibliography:
1. https://www.cs.utexas.edu/users/novak/lexpaper.htm
2. https://www.cs.utexas.edu/users/novak/yaccpaper.htm
3. Online lab manual
4. Hugging Face https://huggingface.co/
*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with
the basic principles in the design of interpreters and translators for artificial languages. The syllabus of the course has
been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has
been evaluated by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type Assessment criteria Assessment methods Weight in the
final grade

Course Problem-solving skills
 Attendance, Activity

Online test: Moodle Quiz/ Written test
60%

Seminar - - -
Laboratory Problem-solving skills

 Attendance, Activity
Lab test 1 and 2
Evaluation of the individual assignment

20%

20%
Project - - -
Minimum standard of performance:
Modeling a typical engineering problem using the domain specific formal apparatus. Final grade calculus: 40% lab + 60%
final exam
Conditions for participating in the final exam: lab ≥ 5
Conditions for promotion: Final grade ≥ 5

Date of filling in:
26.02.2025 Responsible Title First name Last name Signature

Course Assoc.prof.dr.eng. Emil-Ştefan CHIFU

Applications
Assoc.prof.dr.eng. Emil-Ştefan CHIFU

Assist.drd.eng. Ana REDNIC

Date of approval in the department Head of department,
Prof.dr.eng. Rodica Potolea

Date of approval in the Faculty Council Dean,
Prof.dr.eng. Vlad Mureșan

http://www.cs.utexas.edu/users/novak/lexpaper.htm
http://www.cs.utexas.edu/users/novak/yaccpaper.htm
https://huggingface.co/

