SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	30.

2. Data about the subject

2.1 Subject name			Design with microprocessors			
2.2 Course responsible / lec	turer		Prof. dr. eng. Dănescu Radu - radu.danescu@cs.utcluj.ro			
2.3 Teachers in charge of se Laboratory / project	mina	rs /	Assist.drd.eng. Rednic Ana - Ana.Rednic@cs.utcluj.ro Assist. drd. eng. Füzes Attila - Attila.Fuzes@cs.utcluj.ro Assist. drd. eng. Bărăian Andrei - Andrei.Baraian@cs.utcluj.ro			
2.4 Year of study	III	2.5 Sem	emester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			E
DF – fundame		entală,	DD –	în domeniu, DS – de specialitate, DC – complementară	DD	
2.7 Subject category DI – Impusă,			DOp – c	pţior	nală, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	-	Laboratory	1	Project	1
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	-	Laboratory	14	Project	14
3.3 Individual study:		ı							•	
(a) Manual, lecture material a	nd not	es, bibliogr	aphy							23
(b) Supplementary study in the library, online and in the field							14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28			
(d) Tutoring							0			
(e) Exams and tests							4			
(f) Other activities:						0				
3.4 Total hours of individual study (sum (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3	.4)				125					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Computer Architecture, Computer Programming
4.2 Competence	Hardware design, Assembly language programming, C language programming

5

5. Requirements (where appropriate)

5.1. For the course	Black-board/ White-board, projector, computer
5.2. For the applications	Computer, Atmel Studio, Arduino IDE, Arduino & ESP32 development boards,
	Pmods and several other components, modules, sensors etc.

6. Specific competence

6.1 Professional competences	C2 – Designing hardware, software and communication components (2 credits
	 C2.1 - Describing the structure and operation of hardware, software and
	communication components
	 C2.2 - Explaining the role, interaction and operation of hardware, software and communication components
	 C2.3 - Construction of hardware and software components of computing systems using design methods, languages, algorithms, data structures, protocols and technologies
	C2.4 - Metric based evaluation of functional and non-functional characteristics of computing systems
	C2.5 - Implementation of hardware, software and communication components
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the
	integrity of hardware, software and communication systems (3 credits)
	 C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
	C5.2 - Using interdisciplinary knowledge for adapting an information system to application domain requirements
	 C5.3 - Using fundamental principles and methods for security, reliability and usability assurance of computing systems
	 C5.4 - Adequate utilization of quality, safety and security standards in information processing
	 C5.5 - Realization of a project including problem identification and
	analysis, design and development, while proving the understanding of the basic quality needs and requirements
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Knowledge, understanding and use of concepts like microprocessor/microcontroller, bus, memory system, data transfer methods, interface circuits and peripheral devices interfacing, analysis and design of microprocessor systems.
7.2 Specific objectives	 To achieve the main objective, specific objectives are pursued: Knowledge of microprocessors and microcontrollers features and capabilities: hardware capabilities, instruction set architecture, assembly language, and programming solutions. Knowledge of hardware components used with the microprocessors: electrical and logical characteristics, connection modes. Development of skills to find solutions based on microprocessors or microcontrollers for real problems with average complexity. Acquaintance with microcontroller development boards and their software programming tools.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Lecture Overview. Introduction to MP based systems (AVR MCU family)	2	Oral, blackboard	
AVR registers and instructions	2	and multimedia,	
AVR I/O ports and interrupts	2	interactive teaching	
Input/output and interrupts for Arduino systems	2	style, consultations, involvement of	
AVR timers. Timing events with Arduino	2	students in research	
Serial data communication. Serial data transfer with Arduino	2	/ design.	

Analog signals processing	2
Microcontroller based applications: usage of sensors	2
Microcontroller based applications: usage of actuators	2
The ESP32 microcontroller – basic I/O operations	2
The ESP32 microcontroller – Interrupts and peripherals	2
WiFi communication using ESP32	2
Bluetooth communication using ESP32	2
External memories, DMA	2

Bibliography:

- 1. S. Nedevschi, "Microprocesoare", Editura UTCN, 1994.
- 2. M.A. Mazidi, S. Naimi, S. Naimi, "AVR Microcontroller and Embedded Systems: Using Assembly and C", Prentice Hall, 2010, ISBN 9780138003319.
- 3. M. Margolis, "Arduino Cookbook, 2-nd Edition", O'Reilly, 2012.
- 4. N. Kolban, Kolban's Book on ESP 32, 2017

Online:

- 5. http://users.utcluj.ro/~rdanescu/teaching pmp.html
- 6. https://mihai.utcluj.ro/design-with-micro-processors/

8.2 Applications - Seminars / Laboratory / Project	Hours	Teaching methods	Notes
Laboratory			
Introduction to the Arduino boards.	1		
Applications with simple I/O modules	1		
Working with the LCD shield and the interrupt system	1	Presentation on the	
Usage of timers	1	blackboard, experiments on	
Communication interfaces	1	microcontroller	
Digital sensors. Analogue keypad	1	development boards (Arduino,	
Analogue signals processing.	1		
Project	<u>-</u>	ESP32, peripherals, sensors), use of	
Project specification	1	specialized IDE design tools (Arduino IDE, Atmel studio), involvement of students in	
Study of the required technologies	1		
Logic design of the solution.	1		
Implementation of the solution.	1		
Implementation of the solution.	1	research / design.	
Optimization, testing and validation.	1		
Project assessment.	1	1	

Bibliography:

- 1. Atmel ATmega2560 8 bit AVR Microcontroller datasheet, http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561 datasheet.pdf
- 2. Arduino Mega 2560, http://arduino.cc/en/Main/ArduinoBoardMega2560
- 3. Abdul Maalik Khan, AVR Project Book, http://www.digisoft.com.pk/products/avr-project-book
- 4. Mike McRoberts, Beginning Arduino, 2-nd Edition, Technology in Action.
- 5. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.
- 6. N. Kolban, Kolban's Book on ESP 32, 2017
- 7. Online: http://users.utcluj.ro/~rdanescu/teaching pmp.html
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Testing theoretical knowledge and problem solving skills	Written exam	50%
Seminar	-	-	-
Laboratory	Practical skills for problem solving and		
Project	implementation of specific problems for applications design. Attendance and activity.	laboratory work, continuous and final evaluation of the project	50 %

Minimum standard of performance:

Modeling and implementation of typical engineering problems using the theoretical models and applicative tools specific to the domain.

Grade computation: 25% laboratory + 25% project + 50% final exam Conditions for participating in the final exam: Laboratory \geq 5, Project \geq 5 Conditions for passing: final exam \geq 5

Date of filling in: 26.02.2025	Responsible	Title First name Last name	Signature
	Course	Prof.dr.eng. Radu DĂNESCU	
	Applications	Assist.drd.eng. Ana REDNIC	
		Assist.drd.eng. Attila FÜZES	
		Assist.drd.eng. Andrei BĂRĂIAN	

Date of approval in the department	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof.dr.eng. Vlad Mureşan