SYLLABUS # 1. Data about the program of study | 1.1 Institution | The Technical University of Cluj-Napoca | |--------------------------------------|---| | 1.2 Faculty | Faculty of Automation and Computer Science | | 1.3 Department | Computer Science | | 1.4 Field of study | Computer Science and Information Technology | | 1.5 Cycle of study | Bachelor of Science | | 1.6 Program of study / Qualification | Computer science / Engineer | | 1.7 Form of education | Full time | | 1.8 Subject code | 30. | # 2. Data about the subject | 2.1 Subject name | | | Design with microprocessors | | | | |--|-------|---------|--|--|--------------------------|----| | 2.2 Course responsible / lec | turer | | Prof. dr. eng. Dănescu Radu - radu.danescu@cs.utcluj.ro | | | | | 2.3 Teachers in charge of se
Laboratory / project | mina | rs / | Assist.drd.eng. Rednic Ana - Ana.Rednic@cs.utcluj.ro Assist. drd. eng. Füzes Attila - Attila.Fuzes@cs.utcluj.ro Assist. drd. eng. Bărăian Andrei - Andrei.Baraian@cs.utcluj.ro | | | | | 2.4 Year of study | III | 2.5 Sem | emester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification) | | | E | | DF – fundame | | entală, | DD – | în domeniu, DS – de specialitate, DC – complementară | DD | | | 2.7 Subject category DI – Impusă, | | | DOp – c | pţior | nală, DFac – facultativă | DI | ## 3. Estimated total time | 3.1 Number of hours per week | 4 | of which: | Course | 2 | Seminars | - | Laboratory | 1 | Project | 1 | |--|--------|--------------|--------|----|----------|---|------------|----|---------|----| | 3.2 Number of hours per semester | 56 | of which: | Course | 28 | Seminars | - | Laboratory | 14 | Project | 14 | | 3.3 Individual study: | | ı | | | | | | | • | | | (a) Manual, lecture material a | nd not | es, bibliogr | aphy | | | | | | | 23 | | (b) Supplementary study in the library, online and in the field | | | | | | | 14 | | | | | (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays | | | | | | | 28 | | | | | (d) Tutoring | | | | | | | 0 | | | | | (e) Exams and tests | | | | | | | 4 | | | | | (f) Other activities: | | | | | | 0 | | | | | | 3.4 Total hours of individual study (sum (3.3(a)3.3(f))) 69 | | | | | | | | | | | | 3.5 Total hours per semester (3.2+3 | .4) | | | | 125 | | | | | | # 4. Pre-requisites (where appropriate) 3.6 Number of credit points | 4.1 Curriculum | Computer Architecture, Computer Programming | |----------------|--| | 4.2 Competence | Hardware design, Assembly language programming, C language programming | 5 # 5. Requirements (where appropriate) | 5.1. For the course | Black-board/ White-board, projector, computer | |---------------------------|--| | 5.2. For the applications | Computer, Atmel Studio, Arduino IDE, Arduino & ESP32 development boards, | | | Pmods and several other components, modules, sensors etc. | # 6. Specific competence | 6.1 Professional competences | C2 – Designing hardware, software and communication components (2 credits | |------------------------------|---| | | C2.1 - Describing the structure and operation of hardware, software and | | | communication components | | | C2.2 - Explaining the role, interaction and operation of hardware,
software and communication components | | | C2.3 - Construction of hardware and software components of computing
systems using design methods, languages, algorithms, data structures,
protocols and technologies | | | C2.4 - Metric based evaluation of functional and non-functional characteristics of computing systems | | | C2.5 - Implementation of hardware, software and communication components | | | C5 - Designing, managing the lifetime cycle, integrating and ensuring the | | | integrity of hardware, software and communication systems (3 credits) | | | C5.1 - Specifying the relevant criteria regarding the lifetime cycle,
quality, security and computing system's interaction with the
environment and human operator | | | C5.2 - Using interdisciplinary knowledge for adapting an information system to application domain requirements | | | C5.3 - Using fundamental principles and methods for security, reliability
and usability assurance of computing systems | | | C5.4 - Adequate utilization of quality, safety and security standards in
information processing | | | C5.5 - Realization of a project including problem identification and | | | analysis, design and development, while proving the understanding of the basic quality needs and requirements | | 6.2 Cross competences | N/A | # 7. Discipline objective (as results from the key competences gained) | 7.1 General objective | Knowledge, understanding and use of concepts like microprocessor/microcontroller, bus, memory system, data transfer methods, interface circuits and peripheral devices interfacing, analysis and design of microprocessor systems. | |-------------------------|--| | 7.2 Specific objectives | To achieve the main objective, specific objectives are pursued: Knowledge of microprocessors and microcontrollers features and capabilities: hardware capabilities, instruction set architecture, assembly language, and programming solutions. Knowledge of hardware components used with the microprocessors: electrical and logical characteristics, connection modes. Development of skills to find solutions based on microprocessors or microcontrollers for real problems with average complexity. Acquaintance with microcontroller development boards and their software programming tools. | ## 8. Contents | 8.1 Lectures | Hours | Teaching methods | Notes | |---|-------|--------------------------------------|-------| | Lecture Overview. Introduction to MP based systems (AVR MCU family) | 2 | Oral, blackboard | | | AVR registers and instructions | 2 | and multimedia, | | | AVR I/O ports and interrupts | 2 | interactive teaching | | | Input/output and interrupts for Arduino systems | 2 | style, consultations, involvement of | | | AVR timers. Timing events with Arduino | 2 | students in research | | | Serial data communication. Serial data transfer with Arduino | 2 | / design. | | | Analog signals processing | 2 | |--|---| | Microcontroller based applications: usage of sensors | 2 | | Microcontroller based applications: usage of actuators | 2 | | The ESP32 microcontroller – basic I/O operations | 2 | | The ESP32 microcontroller – Interrupts and peripherals | 2 | | WiFi communication using ESP32 | 2 | | Bluetooth communication using ESP32 | 2 | | External memories, DMA | 2 | #### Bibliography: - 1. S. Nedevschi, "Microprocesoare", Editura UTCN, 1994. - 2. M.A. Mazidi, S. Naimi, S. Naimi, "AVR Microcontroller and Embedded Systems: Using Assembly and C", Prentice Hall, 2010, ISBN 9780138003319. - 3. M. Margolis, "Arduino Cookbook, 2-nd Edition", O'Reilly, 2012. - 4. N. Kolban, Kolban's Book on ESP 32, 2017 #### Online: - 5. http://users.utcluj.ro/~rdanescu/teaching pmp.html - 6. https://mihai.utcluj.ro/design-with-micro-processors/ | 8.2 Applications - Seminars / Laboratory / Project | Hours | Teaching methods | Notes | |--|----------|--|-------| | Laboratory | | | | | Introduction to the Arduino boards. | 1 | | | | Applications with simple I/O modules | 1 | | | | Working with the LCD shield and the interrupt system | 1 | Presentation on the | | | Usage of timers | 1 | blackboard, experiments on | | | Communication interfaces | 1 | microcontroller | | | Digital sensors. Analogue keypad | 1 | development
boards (Arduino, | | | Analogue signals processing. | 1 | | | | Project | <u>-</u> | ESP32, peripherals, sensors), use of | | | Project specification | 1 | specialized IDE design tools (Arduino IDE, Atmel studio), involvement of students in | | | Study of the required technologies | 1 | | | | Logic design of the solution. | 1 | | | | Implementation of the solution. | 1 | | | | Implementation of the solution. | 1 | research / design. | | | Optimization, testing and validation. | 1 | | | | Project assessment. | 1 | 1 | | ## Bibliography: - 1. Atmel ATmega2560 8 bit AVR Microcontroller datasheet, http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561 datasheet.pdf - 2. Arduino Mega 2560, http://arduino.cc/en/Main/ArduinoBoardMega2560 - 3. Abdul Maalik Khan, AVR Project Book, http://www.digisoft.com.pk/products/avr-project-book - 4. Mike McRoberts, Beginning Arduino, 2-nd Edition, Technology in Action. - 5. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012. - 6. N. Kolban, Kolban's Book on ESP 32, 2017 - 7. Online: http://users.utcluj.ro/~rdanescu/teaching pmp.html - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field. #### 10. Evaluation | Activity type | Assessment criteria | Assessment methods | Weight in the final grade | |---------------|---|---|---------------------------| | Course | Testing theoretical knowledge and problem solving skills | Written exam | 50% | | Seminar | - | - | - | | Laboratory | Practical skills for problem solving and | | | | Project | implementation of specific problems for applications design. Attendance and activity. | laboratory work, continuous and final evaluation of the project | 50 % | Minimum standard of performance: Modeling and implementation of typical engineering problems using the theoretical models and applicative tools specific to the domain. Grade computation: 25% laboratory + 25% project + 50% final exam Conditions for participating in the final exam: Laboratory \geq 5, Project \geq 5 Conditions for passing: final exam \geq 5 | Date of filling in: 26.02.2025 | Responsible | Title First name Last name | Signature | |--------------------------------|--------------|--------------------------------|-----------| | | Course | Prof.dr.eng. Radu DĂNESCU | | | | Applications | Assist.drd.eng. Ana REDNIC | | | | | Assist.drd.eng. Attila FÜZES | | | | | Assist.drd.eng. Andrei BĂRĂIAN | | | Date of approval in the department | Head of department,
Prof.dr.eng. Rodica Potolea | |---|--| | Date of approval in the Faculty Council | Dean,
Prof.dr.eng. Vlad Mureşan |