SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	10.

2. Data about the subject

2.1 Subject name			Electrotechnics			
2.2 Course responsible / lecturer		Prof. dr. eng. Darabant Laura - <u>Laura.Darabant@et.utcluj.ro</u>				
2.3 Teachers in charge of laboratory / project	semin	nars /	Prof. dr. eng. Darabant Laura - <u>Laura.Darabant@et.utcluj.ro</u> Lecturer dr. eng. Alexandru Mureşan - Alexandru.Muresan@ethm.utcluj.ro			ro
2.4 Year of study	I	2.5 Sem	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
2.7 Subject category DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DD			
DI – Impusă,		Impusă, L	00p – o	pţion	ală, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	3	Seminars	-	Laboratory	1	Project	-
3.2 Number of hours per semester	56	of which:	Course	42	Seminars	-	Laboratory	14	Project	-
3.3 Individual study:								ı		
(a) Manual, lecture material an	d not	es, bibliogr	aphy							23
(b) Supplementary study in the library, online and in the field							12			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring								10		
(e) Exams and tests							4			
(f) Other activities:							0			
3.4 Total hours of individual study (su	ıma (3	3.3(a)3.3(f)))		69					
3.5 Total hours per semester (3.2+3.4	·)				125					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Mathematics I, II; Physics
4.2 Competence	N/A

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Attending the labs is mandatory

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts
	 C1.1 – Recognizing and describing concepts that are specific to the fields
	of calculability, complexity, programming paradigms, and modeling
	computational and communication systems

	 C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Operating with basic concepts of electrical engineering
7.2 Specific objectives	 Acquiring theoretical knowledge regarding electrotechnics. Acquiring practical skills regarding electrical circuits.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Electric and magnetic quantities. Static electric and magnetic fields (the electric field in free space and in material, electric current, the magnetic field in free space and in material)	3		
Laws and theorems of electromagnetic field	3		
Electrical capacitance, energy and forces	3		
Magnetic circuits. Self-inductance and mutual inductance. Magnetic energy and forces.	3		
Basic concepts, units and laws of circuit theory (characteristic values, power in sinusoidal regime, representation of sinusoidal functions by vectors and complex numbers)	3	Multimedia, PowerPoint	
The characterization of the linear circuits in the complex plane, the complex form of some theorems	3	Presentations, Demonstration board	
Equivalent impedances (series and parallel connection, without mutual inductance, with mutual inductance, real condenser, real inductance, air core transformer)	3	Demonstration board	
Resonance (in series, parallel, real, inductively coupled circuits, power factor improvement)	3		
Network theorems (the superposition theorem, Thevenin-Norton theorem)	3		
Network theorems (mesh or loop analysis, node analysis, matrix methods)	3		
Two-port networks (equations, equivalent circuits, open-circuit and short-circuit tests, characteristic impedance, propagation constant, filters)	3		
Study-state periodic non-sinusoidal regime (Fourier expansion, power, network analysis)	3		
Transient regime of linear circuits (continuity conditions, transient behavior of the R-L, R-C and R, L, C)	3		
Transient regime of linear circuits (the Laplace transform, Duhamel integral, state variable method)	3		

Bibliography:

- 1. The Theory of Electric Circuits, authors: RV Ciupa, V. Ţopa, Casa Cartii de Stiinta Publishing House, 2003, ISBN 973-9204-98-8
- 2. Simion, E., Maghiar, T., Electrotehnica, E.D.P., Bucureşti, 1982
- 3. Mocanu, C. I., *Teoria câmpului electromagnetic,* E.D.P., Bucureşti, 1981

8.2 Applications - Seminars / Laboratory / Project	Hours	Teaching methods	Notes
Determination of the spectrum and equipotential surfaces of an electric field using an electrokinetic model	1		

Electrical model for Laplace equation in finite differences applied at equipotential surfaces and electrostatic field spectrum determinations	1		
Computing capacitances, resistances and inductances for given structures	1	Practical exercises	
Analysis of the R, L, C series circuit and voltage resonance	1		
Analysis of the R, L, C parallel circuit and current resonance	1		
Study of a passive two-port network	1		
Representation of sinusoidal functions by vectors and complex numbers	1		

Bibliography:

- 1. Răduleț, R., Bazele electrotehnicii. Probleme., E.D.P., București, 1981
- 2. Dan Doru Micu, **Laura Darabant**, Denisa Stet, Mihaela Cretu, Andrei Ceclan, Levente Czumbil, Teoria circuitelor electrice. Probleme, UT Press, Cluj-Napoca, 978-606-737-140-6, 2016, 280 pagini;

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course		Two hours written examination, written test (WT)	0.8 WT		
Seminar	-				
Laboratory		Laboratory works (LW)	0.2 LW		
Project	-				
Minimum standard of performance: N=0.8 WT ± 0.2 LW					

Minimum standard of performance: N=0,8 WT + 0,2 LW Pass conditions: : N≥50%; LW≥50%

Date of filling in: 26.02.2025	Responsible	Title, First name Last name	Signature
	Course	Prof.dr.eng. Laura DARABANT	
	Applications	Prof.dr.eng. Laura DARABANT	
		Lecturer dr. eng. Alexandru Mureşan	

Date of approval in the department	Head of department , Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof.dr.eng. Vlad Mureșan

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.