Syllabus

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer Science / Engineer
1.7 Form of education	Full time
1.8 Codul disciplinei	105

2. Data about the subject

2.1 Subject name			Robot Control systems			
2.2 Course responsible/lecturer			Lect.dr.eng. Natsakis Anastasios - tassos.natsakis@aut.utcluj.ro			
2.3 Teachers in charge of applications		Lect.dr.eng. Natsakis Anastasios - tassos.natsakis@aut.utcluj.ro				
2.4 Year of study	4	2.5 Sem	ester	ester 1 2.6 Assessment (E/C/V)		
2.7 Tuno of subject	DF -	fundame	ndamental, DD – in the field, DS – specialty, DC – complementary			DD
2.7 Type of subject DI – compuls		ory, DC) – ele	ective, Dfac – optional	DI	

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	-	Laboratory	2	Project	1
3.2 Number of hours per semester	130	of which:	Course	28	Seminars	-	Laboratory	28	Project	14
3.3 Individual study:		·	I.							
(a) Manual, lecture material a	nd not	es, bibliogra	aphy							28
(b) Supplementary study in the library, online and in the field							14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14				
(d) Tutoring							2			
(e) Exams and tests							2			
(f) Other activities:						0				
3.4 Total hours of individual study (s	uma (3	.3(a)3.3(f	F)))		60				<u> </u>	
3.5 Total hours per semester (3.2+3.	4)				130	1				

4. Pre-requisites (where appropriate)

3.6 Number of credit points

ii iie iequisites (where appropriat	
4.1 Curriculum	Systems Theory, Process modeling, Linear Algebra and Analytical Geometry, Python programming
4.2 Competence	Solve problems in the field of systems engineering by identifying proper methods and techniques applying mathematics and numerical calculus

5

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Presence is mandatory

6. Specific competences

6.1 Professional competences	C3 Operating with fundamentals of control engineering, process modelling, simulation, identification and analysis methods, and computer aided design.
6.2 Cross competences	N/A

7. Course objectives

7.1 General objective	Acquire knowledge in design, programming and operating industrial robots.
7.2 Specific objectives	Industrial robots modelling, Robot control algorithms, Robot programming, Industrial applications

8. Contents

8.1 Lecture	Hours	Teaching methods	Notes
Introduction to Robotis	2		
Forward kinematics – Homogeneous Transformations	2		
Forward kinematics - Denavit-Hartenberg convention	2	Duccontation	
Jacobian matrix	2	Presentation, Examples, Practical	
Inverse kinematics	2	applications	
Dynamic modeling	2	-	
Introduction to industrial robots programming	2	-	
Programming and Control of robots	8	1	
Other types of robots (mobile, drones, underwater	6	-	

Bibliography

- 1. Philip J.Mc.Kerrow Introduction to Robotics Addison-Weslwy Publ.Co.,1995.
- 2. John J. Craig Introduction to Robotics (Mechanics and Control) CRC Press 2005.
- 3. Lazea Gh., E. Lupu, P. Dobra- Sisteme de conducere a robotilor si fabricatie integrata. Ed. Mediamira, 1998.
- 4. Mark W. Spong Robot modeling and control John Willey & Sons, 2004.
- 5. Shuai Li Kinematic Control of Redundant Robot Arms Using Neural Networks, 2019.

8.2 Applications (laboratory)	Hours	Teaching methods	Notes
Coordinate systems	2		
Forward kinematics	2		
Denavit-Hartenberg convention	2		
Inverse kinematics	2	Practical	
Dynamic modeling	4	applications,	
Control design for industrial robots	4	numerical methods	
Industrial robots programming	4		
Applications for object manipulation	2		
Applications on other robot types	4	1	
Evaluation	2	1	

Bibliography

- 1. Philip J.Mc.Kerrow Introduction to Robotics Addison-Weslwy Publ.Co.,1995.
- 2. John J.Craig Introduction to Robotics (Mechanics and Control) CRC Press 2005.
- 3. Lazea Gh., E. Lupu, P. Dobra- Sisteme de conducere a robotilor si fabricatie integrata. Ed. Mediamira, 1998.
- 4. Mark W. Spong Robot modeling and control John Willey & Sons, 2004
- 5. Peter Corke Robotics toolbox for python

8.3 Applications (project)	No. hours	Teaching methods	Notes
Topic choice	1		
Model implementation for selected topic	8	Practical	
Interface creation and control methodology for selected topic	4	applications, numerical methods	
Reporting and presentation	1	numencarmethous	
-u u			

Bibliography

1. Ramkumar Gandhinathan - ROS Robotics Projects – Packt publishing, Dec 2019

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Demonstration of understanding of principles of robotic structures, modeling, control and applications	Written examination	60%
Laboratory	Ability to construct robotic simulations and design controller strategies	Computer examination	30%
Project	Ability to construct basic robotic simulations using ROS	Report	10%
Minimum standa	rd of performance:	•	

Minimum standard of performance: Final mark (course, laboratory, and project) ≥ 5

Date of filling in: 26.02.2025	Responsible	Title First name NAME	Signature
	Course	Lect.dr.eng. Anastasios NATSAKIS	
	Applications	Lect.dr.eng. Anastasios NATSAKIS	

Date of approval in the department	Head of department, Prof.dr.eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof.dr.eng. Vlad Muresan