Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca			
1.2 Faculty	Automation and Computer Science			
1.3 Department	Automation			
1.4 Field of study	Systems Engineering			
1.5 Cycle of study	Bachelor of Science			
1.6 Program of study/Qualification	Automation and Applied Informatics (English)			
1.7 Form of education	Full time			
1.8 Code of discipline	51.10			

2. Data about the subject

2.1 Subject name		Microsystems and Data Acquisition			rosystems and Data Acquisition			
2.2 Course responsible/lecturer			Assoc. Prof. Eng. Moiş George, PhD – george.mois@aut.utcluj.ro					
2.3 Teachers in charge of a	pplic	ations	Assoc. Prof. Eng. Moiş George, PhD – george.mois@aut.utcluj.ro					
2.4 Year of study	4	2.5 Semest	Semester 1 2.6 Assessment (E/C/V)		E			
2.7 Tuno of subject	DF – j	DF – fundamental, DID – in the field, DS – specialty, DC – complementary						
2.7 Type of subject	DOB -	DOB – compulsory, DO – elective, FAC – optional DO			DO			

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography							14			
(b) Supplementary study in the library, online and in the field							12			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							12			
(d) Tutoring						3				
(e) Exams and tests						3				
(f) Other activities:						·	0			
					Ī					

3.4 Total hours of individual study (sum of (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	-
4.2 Competence	Analog and digital signal acquisition system architectures, signal conditioning circuitry, signal generators, sensors and transducers, microcontrollers and
	industrial equipment programming

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Attendance is mandatory

6. Specific competences

6.1 Professional competences	C5 Application development and implementation of control structures and algorithms, using project management principles, programming environments and microcontroller-based technologies, signal processors, programmable automation systems, embedded systems C5.1 Identification of the concepts and methods for project management and of specific languages for application development (sequential, concurrent, real-time, non-real-time, distributed, embedded, non-
	concurrent, real-time, non-real-time, distributed, embedded, non- embedded, mobile, on-line, etc.).
	C5.4 Assessment of the implementation of automation and IT applications using automatic control structures, algorithms, programming

	environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems, etc.
6.2 Cross competences	-

7. Course objectives

7.1 General objective	Understand the concept of virtual instrumentation, of analog and digital
	signal acquisition systems
7.2 Specific objectives	- Knowledge of LabVIEW TM specific programming techniques,
	- Implementing programs using graphical programming,
	- Accomplishment of analog and digital signal acquisition from sensors,
	- Implementing control structures using LabVIEW™, with industrial equipment
	or instruments.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction to the LabVIEW TM Environment	2		
Signal Acquisition. USB6009 User Guide And Specifications	2		
Implementing a program in LabVIEW [™] (Virtual Instruments - VIs)	2		
Data Types: Vectors, Clusters, etc. Troubleshooting and Debugging VIs	2		
Developing Modular Applications. Storing Measurement Data in Files	2		
Communicating Between Multiple Loops running in parallel on a computing system	2	Projector	
Programming techniques introduction for myRIO embedded system. Short presentation of the real-time system and programming using LabVIEW™ FPGA	2	presentations, or Microsoft Teams platform	-
Industrial Instrument Control from LabVIEW™	2	discussions	
Controlling the User Interface	2		
Improving an Existing VI	2		
Hardware-in-the-Loop Simulation. Statechart. MathScript. Industrial applications of the technologies presented.	2		
LabVIEW [™] and Simulink Interfacing. Process Identification. Control and simulation	2		
Programming Arduino Devices from LabVIEW [™]	2		
SistemLink TM presentation	2		

Bibliography

- 1. National Instruments, "NI LabVIEW™ for Academia Course", Course Software Version 2024, December 2024 Edition, 480 pg., digital format.
- 2. Robert H. Bishop, National Instruments, "LabVIEW 2009 Student Edition", Prentice Hall, 2009, Bibl. UTC-N 536.027.
- 3. John Essick, "Hands-On Introduction to LabVIEW for Scientists and Engineers", Oxford University Press, 2008, Bibl. UTC-N 536.028.
- 4. Peter A. Blume, "The LabVIEW Style Book", Prentice Hall, 2007, Bibl. UTC-N 541.283.
- 5. Ronald Larsen, "LabVIEW for Engineers", Prentice Hall, 2010, Bibl. UTC-N 541.295.
- 6. Stephen Philip Tubbs, "LabVIEW for Electrical Engineers and Technologists", Stephen Philip Tubbs, 2011, Bibl. UTC-N 535.886.

8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Introduction. Signal Acquisition with Express VIs	4	Practical activities	
Signal Acquisition with NI DAQmx Drivers. Signal filtering	4	on the equipment,	
Signal Generators. Modular applications with SubVIs	4	or simulation, the	
Serial Data Transmission. Storing Measurement Data	4	development of	_
Design a Control System in LabVIEW [™]	4	software	
Signal Acquisition with myRIO [™]	4	applications,	
Practical exam	4	supplementary	
	7	explanations using	

presentations related to applications, or Microsoft Teams platform
discussions

Bibliography

- 1. Silviu Folea, "Microsystems and Data Acquisition using LabVIEWTM", practical applications, UTPRESS, Cluj-Napoca, 2024, 106 pg., ISBN 978-606-737-709-5, online: https://biblioteca.utcluj.ro/files/carti-online-cucoperta/709-5.pdf.
- 2. Ed Doering, "NI myRIO Project Essentials Guide", 2013 National Technology and Science Press, download the latest version at http://www.ni.com/myrio/project-guide.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The topics presented at this course are specialized ones; they are included in other universities' curricula. The LabVIEW[™] graphical programming environment is used in industrial testing, measurement and control applications.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Acquired knowledge	Written exam and oral evaluation using Microsoft Teams platform	50%
Seminar	-	-	-
Laboratory	Acquired practical skills	Evaluation of the laboratory reports and Practical exam and oral evaluation using Microsoft Teams platform	50%
Project	-	-	-
Minimum standa	ord of performance:	·	

Final exam >= 5, Lab grade >= 5 mandatory to be able to take the final exam, 50% Final exam + 50% Lab Grade > 5

Date of filling in:		Title Firstname NAME	Signature
20.01.2025	Course	Assoc. Prof. Eng. George MOIŞ, PhD	
	Applications	Assoc. Prof. Eng. George MOIŞ, PhD	

Date of approval by the Automation Department Board	Head of Automation Department Prof. Eng. Honoriu VĂLEAN, PhD
Date of approval by the Faculty of Automation and Computer	Dean
Science	Prof. Eng. Vlad MUREŞAN, PhD