Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	21.00

2. Data about the subject

2.1 Subject name		Proc	ess I	ss Modelling					
2.2 Course responsible/lect	turer		Pro	of. dr.	eng. Daniel Moga – daniel.moga@aut.utcluj.ro				
2.3 Teachers in charge of a	pplica	ations	Prof. dr. eng. Daniel Moga – daniel.moga@aut.utcluj.ro Drd.ing. Cristina Stancioi – stancioi_cristina@yahoo.com						
2.4 Year of study	2	2.5 Semest	er	er 1 2.6 Assessment (E/C/V)					
2.7 Tune of cubic et	DF – j	fundamental,	, DD – in the field, DS – specialty, DC – complementary						
2.7 Type of subject	DI – c	– compulsory, DO – elective, Dfac – optional							

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	Course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography							14			
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							17			
(d) Tutoring							0			
(e) Exams and tests							3			
(f) Other activities:								0		
2. 4. Takal Januara aftir alimiah da laturah /		(12.2/.)	2/(1))		4.4					

3.4 Total hours of individual study (sum of (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Linear algebra, Special Mathematics in engineering, Physics, Chemistry, Electrotechnics, Basis of electronic circuits, Numerical calculus
4.2 Competence	Mathematics (linear algebra and mathematical analysis), Physics, Fundamental electronic circuits, Elementary numerical methods

5. Requirements (where appropriate)

5.1. For the course	Blackboard, projector, computer / Internet access to online platforms
5.2. For the applications	Computers, specific software

6. Specific competences

6.1 Professional competences	C1 Operating with basic concepts of mathematics, physics, measurement science, mechanical engineering, chemical engineering, electrical engineering in systems engineering. C1.2 Explaining the problems to be solved and the argumentation of the solutions in system engineering using the techniques, concepts, and methods of mathematics, physics, technical graphics, electrical engineering and electronics.
	and electronics. C1.5 Development of projects in the field of systems engineering by
	selecting and applying mathematical and other scientific methods specific to

	the field
6.2 Cross competences	

7. Course objectives

7.1 General objective	Acquiring knowledge related to model building (system modelling / data modelling) and dynamic models simulation
7.2 Specific objectives	 Acquiring knowledge related to analysis, modeling and simulation of dynamic systems Acquiring the skills for building equivalent electrical models. Learning of elementary numerical modeling techniques.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Fundamentals of process modeling	4		
Mathematical representation of physical systems (physical variables, state, equilibrium, transformations)	2		
Practical aspects in the development of dynamic models	2		
Physical quantities and components significant for the electrical domain	2		
Physical quantities and components significant for the mechanical domain	2		
Physical quantities and components significant for the thermal, magnetic and hydraulic domains	2	Presentations,	
The principles of energy transfer modeling in various energy domains	4	discussions	
Construction of equivalent models (Analogies between different forms of energy)	4		
Modeling of energy conversion: electromagnetic radiation – electric current / heat	2		
Modeling of energy conversion: chemical - electrical	2		
Constructing mathematical models using data obtained through experiments	2		

Bibliography

1. P. E. Wellstead. Introduction to physical system modelling, 2000. Electronic Edition. Publisher: Control Systems Principles (www.control-systems-principles.co.uk),

Online: http://www.control-systems-principles.co.uk/ebooks/Introduction-to-Physical-System-Modelling.pdf

- 2. Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg. System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, 5th Edition, 2012. ISBN: 978-0-470-88908-4.
- 3. Devendra K. Chaturvedi. Modeling and Simulation of Systems Using MATLAB and Simulink CRC Press, 2010
- 4. Bill Goodwine, Engineering Differential Equations. Theory and Applications, Springer, 2011
- 5. J. Kiusalaas, Numerical Methods in Engineering with MATLAB. Cambridge University Press, 2005.
- 6. L. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with MATLAB. Cambridge University Press, 2003.
- 7. S . Graham Kelly. Advanced Engineering Mathematics with Modeling Applications, CRC Press 2008
- 8. Kreith, F., Manglik, R. M., Bohn, M.S., Principles of Heat Transfer, Seventh Edition, Cengage Learning, 2011
- 9. E. Holzbecher, Environmental Modeling: Using Matlab. Springer, 2007.
- 10. Heinrich Haberlin PHOTOVOLTAICS: SYSTEM DESIGN AND PRACTICE, John Wiley & Sons, 2012
- 11. P. Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica, Wiley-IEEE Press, 2003.
- 12. Golub, G. H., C.F. Van Loan, Matrix computations, John Hopkins Univ. Press, Baltimore, 1984
- 13. Y. Kwon and H. Bang, The Finite Element Method Using MATLAB, Second Edition. CRC Mechanical Engineering Series, Taylor & Francis, 2000

8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Introduction in Matlab and Simulink	4		
Symbolic calculus in Matlab	2		
Modelling and simulation of electrical systems	2	5	
Modeling and simulation of electrical systems with active elements	2	Exercises, Simulation in	
Modeling and simulation of switching electronic systems	2	Matlab	
Modeling and simulation of mechanical systems (suspension system of a car)	2	IVIALIAD	
Construction of mathematical models based on experimental data	4		
Energy conversion between electrical and mechanical domains (DC motor and	2		

alternator)		
Static and dynamic models for thermal systems	2	
Modeling hydraulic systems using Matlab/Simulink	4	
Simulation using Monte Carlo methods	2	

Bibliography

- 1. J. Attia, Electronic and Circuit Analysis Using MATLAB: Software. Electronic and Circuit Analysis Using MATLAB, CRC Press, 1999.
- 2. S. Karris, Electronic Devices And Amplifier Circuits: With Matlab Applications. Orchard Publications, 2005.
- 3. J. Attia, Electronic and Circuit Analysis Using MATLAB: Software. Electronic and Circuit Analysis Using MATLAB, CRC Press, 1999.
- 4. K. Lonngren, S. Savov, and R. Jost, Fundamentals of Electromagnetics with MATLAB. SciTech Pub., 2007.
- 5. C. Ong, Dynamic Simulation of Electric Machinery: Using MATLAB/SIMULINK. Prentice Hall PTR, 2003.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Laboratory work targeted on interest areas of the active local/regional companies

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	Knowledge of process modelling methods	(E) Written exam	60%	
Seminar				
Laboratory	Ability to build equivalent models and simulate mathematical models in MATLAB	(L) Creation and simulation of models using Matlab	40%	
Project				
Minimum standard of performance: E ≥ 5; L ≥ 5				

Date of filling in:
15.02.2025
Course Prof.dr.eng. Daniel MOGA
Applications Prof.dr.eng. Daniel MOGA
Drd.ing. Cristina Stancioi

Date of approval by the Automation Department Board	Head of Automation Department Prof.dr.ing. Honoriu VĂLEAN
Date of approval by the Automation and Computer Science Faculty Council	Dean Prof.dr.ing. Vlad MUREŞAN