Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Discipline code	114.00

2. Data about the subject

2.1 Subject name		Autonomous driving: Technology, Dynamics and Control				
2.2 Course responsible/led	turer	r Prof.dr.ing. Ionut Muntean -ionut.muntean@aut.utcluj.ro				
2.3 Teachers in charge of a	applic	cations Prof.dr.ing. Ionut Muntean -ionut.muntean@aut.utcluj.ro				
2.4 Year of study	4 2.5 Semesto		er	1	2.6 Assessment (E/C/V)	Е
2.7 Type of subject	DF – fundamental, DID – in the field, DS – specialty, DC – complementary			DS		
2.7 Type of subject		– compulsory	, DO	P – el	ective, FAC – optional	FAC

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	-	Laboratory	2	Project	-
3.2 Number of hours per semester	56	of which:	course	28	Seminar	-	Laboratory	28	Project	-
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography										
(b) Supplementary study in the library, online and in the field						13				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						4				
(d) Tutoring										
(e) Exams and tests								2		
(f) Other activities:										
3.4 Total hours of individual study (sum o	f (3.3(a)3	3.3(f)))		19					
3.5 Total hours per semester (3.2+3	3 4)				75					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Systems Theory, Computer Programming, Control Engineering
4.2 Competence	Mathematics, Programming, Analytical understanding

5. Requirements (where appropriate)

· · · · · · · · · · · · · · · · · · ·					
5.1. For the course	N/A				
5.2. For the applications	The presence to application classes is mandatory				

6. Specific competences

6.1 Professional competences	C1: Operating with basic concepts of mathematics, physics, measurement
	science, mechanical engineering, chemical engineering, electrical engineering
	in systems engineering
	C2: Operating with basic concepts of computer science, information
	technology and communication
	C3: Operating with fundamentals of control engineering, process modelling,
	simulation, identification and analysis methods, and computer aided design.
	C4: Design, implementation, testing, operation and maintenance of systems
	with generic and dedicated equipments, including computer networks for
	control engineering and applied informatics.
	C5: Development and implementation of automatic control structures and
	algorithms based on project management principles, software environments

	and technologies based on microcontrollers, signal processors, programmable logic controllers and embedded systems.
6.2 Cross competences	

7. Course objectives

7.1 General objective	Development of skills for algorithm development in the area of autonomous driving
7.2 Specific objectives	Understanding the technology and strategies used for autonomous driving Implementation of algorithms for perception and sensor data fusion Implementation of planning and motion control algorithms Have an overview of safety concepts used in autonomous vehicles Get an overview on connectivity in vehicles

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction	2		
Radar sensors	2		
Ultrasonic and Lidar sensors	2		
Introduction to video sensors	2		
3D computer vision I	2	Slides presentation,	
3D computer vision II	2	explanations and	
The Path to Deep Learning	2	demonstrations,	
Convolutional Neural Networks	2	discussions, case	
CNN Architectures and Applications	2	studies	
Connectivity and data analytics	2		
Powertrain control- Model based development	2		
Steering systems	2		
Vehicle dynamics	2		
BULL I			

Bibliography

- 1. IEEE Explore articles on autonomous driving (shared on the courses)=Automation: From Driver Assistance Systems to Automated Driving, VDA, 2015
- 2. Automotive handbook, Robert Bosch GmbH, 2007

9.2 Anlications (comings/laborators/project)	No hours	Tooching mothods	Notes
8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Introduction			
Application with ultrasonic sensors			
Application with video sensors			
Object detection applications			
Object detection applications			
Object detection applications		Laboratory stands,	
GPS + odometry fusion with Kalman filters			
Occupancy grid +SLAM		case studies, open discussions	
Detection of free space and obstacle		uiscussions	
Robot car with framework for path planning and motion control			
Electric power steering application I			
Electric power steering application II			
CAN communication; safety concepts			
Application on connectivity			
Bibliography	·		
Will be shared at each laboratory			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the course and applications is developed together with an Automotive Company.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Evaluation of the acquired skills, activity within lectures	Exam or project work	100%		
Seminar					
Laboratory					
Project					
Minimum standard of performance: Exam grade or project work >5					

Date of filling in:		Title Firstname NAME	Signature
13.02.2025	Course	Prof.dr.ing. Ionut MUNTEAN	
	Aplications	Prof.dr.ing. Ionut MUNTEAN	

Date of approval by the Department Board Automation	Head of Departament Prof.dr.ing. Honoriu VĂLEAN
Date of approval by the Faculty Council Automation and Computer Science	Dean Prof.dr.ing. Vlad MUREŞAN