Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	103.00

2. Data about the subject

	•					
2.1 Subject name			Basics of Quantum Information			
2.2 Course responsible / le	cturer	-	CS1 dr. Zârbo Liviu - liviu.zarbo@itim-cj.ro			
2.3 Teachers in charge of a	pplica	itions	CS Mathe Levente - levente.mathe@itim-cj.ro AC Pioras-Timbolmaș Larisa - larisa.timbolmas@itim-cj.ro			
2.4 Year of study	Ш	2.5 Sem	ester	ester 1 2.6 Assessment (E/C/V)		
2./ Type of subject		ental, DD – in the field, DS – specialty, DC – complementary		DC		
		ory, DO	– ele	ctive, Dfac – optional	DFac	

3. Estimated total time

5. Estimated total time			1							
3.1 Number of hours per week	3	of which:	Course	2	Seminar	-	Laboratory	1	Project	-
3.2 Number of hours per semester	42	of which:	course	28	Seminar	-	Laboratory	14	Project	-
3.3 Individual study		•			•					
(a) Manual, lecture material a	nd no	tes, biblio	graphy							10
(b) Supplementary study in the library, online and in the field					10					
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					10					
(d) Tutoring										0
(e) Exams and tests					3					
(f) Other activities:										0
2.4 Tatal barres of individual atriducts		(12.2/) 2	2(0))		22	-1				

3.4 Total hours of individual study (sum of (3.3(a)3.3(f)))	33
3.5 Total hours per semester (3.2+3.4)	75
3.6 Number of credit points	3

4. Pre-requisites (where appropriate)

4.1 Curriculum	Linear Algebra
	Mathematical Analysis
	Physics
	Programming
4.2 Competence	

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competences

6.1 Professional competences	Basic high-school level or first year undergraduate physics: mechanics, electricity and magnetism, optics Basic knowledge of linear algebra and calculus, first year undergraduate student level Basic programming knowledge, first year undergraduate student level
6.2 Cross competences	

7. Course objectives

7.1 General objective	Developing general knowledge relevant to applications in the field of quantum computation and quantum communications
7.2 Specific objectives	 Assimilating the basics of quantum computation: qubits, quantum gates, quantum circuits, quantum algorithms Developing the basic skills for developing quantum algorithms Understanding the basics of quantum communications protocols.

8. Contents

8.1 Curs	Nr.ore	Teaching methods	Notes
 1. Introductory notions. From classical to quantum computing The dual behavior of the quantum objects Tunneling Double slit experiment 	2		
 Quantum states Notations Probabilities Matrix and vector representation of quantum states Qubits Pure states and mixed states 	2		
 3. Observables and quantum measurement 1 Observables and operators The Heisenberg principle Projective measurements The Stern-Gerlach experiment 	2		
 4. Observables and quantum measurement 2 Quantum state vectors. Observables and operators, the density matrix. Probabilities and expectation values. Partial measurements 	2		
 5. Qubits The two-level system and real life examples Quantum gates Superpositions and entanglement of qubits The Bloch sphere. 	2	Blackboard, video- lectures, discussions of examples, problem solving	
 6. Qubit control Larmor precession. Rabi oscillations Functioning of quantum gates. 	2		
 7. Quantum measurement and applications 1. The no-cloning theorem Quantum teleportation Quantum sensing Quantum tomography 	2		

8. Quantum measurement and applications 2.	
 Quantum random number generation 	2
 Quantum communication protocols (BB84). 	
9. Quantum Communication	
 Quantum cryptography notions 	2
Quantum communication networks.	
10. Quantum computation and simulations	
 digital and analog quantum computers. 	2
 Quantum simulations – concepts/applications. 	
11. Quantum circuits and algorithms	2
The Uranium platform	2
 Using online quantum computing resources (e.g. IBMQ) 	
12. Quantum algorithms 1.	
 Deutsch-Josza algorithm. 	2
Grover algorithm	
13. Quantum algorithms 2.	
 Quantum Fourier transform 	2
 RSA and Shor's algorithm 	
14. Physical platforms for quantum computing	
 Superconducting qubits 	2
Cold atoms	
lon traps	

Bibliography:

- 1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

8.2 Aplications - seminar / laboratory / project	Hours	Teaching methods	Notes
Visualising qubit operations: Bloch sphere, single qubit gates, destructive and constructive interference (Quantum Odyssey)	2		
2. Quantum circuits in Q. Odyssey: vectors, eigenvalues, basis change	2	Labad :a INCDTINA	
3. Generating entanglement in quantum circuits (quantum gates: CNOT, SWAP, Toffoli). Visualisation in Q. Odyssey, circuits on the Uranium platform.	2	Lab work in INCDTIM Quantum Software lab, using tools such	
4. Time evolution of qubits and their observables: visualization in Python	2	as Uranium, Quantum Oddyssey, Google Colab.	
5. Uranium platform: multiqubit quantum circuits and quantum measurements; Deutsch algorithm	2	Google Colab.	
6. Quantum oracles, Grover's algorithm (Uranium, Q. Odyssey)	2		
7. The Quantum Fourier Transform	2		

Bibliography:

- 1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Solving 2 problems + 1 theory set of questions	Written exam	60%
Seminar	-	-	-
Laboratory	-	Periodic lab quizzes	40%
Project	-	-	-

Date of filling in:	Responsible	Title, First name Last name	Signature
15.02.2025	Course	Dr. Liviu ZÂRBO	
	Aplications	CS Levente MATHE	
		AC Larisa PIORAS-TIMBOLMAŞ	

Date of approval in the department	Head of Departament, Prof. dr. eng. Honoriu Valean	
Date of approval in the Faculty Council	Dean, Prof. dr. eng. Vlad Mureşan	