SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	54.20

2. Data about the subject

2.1 Subject name			Crypto	Cryptology				
2.2 Course responsible	e / lecture	r	Prof. d	Prof. dr. eng. Alin Suciu - <u>alin.suciu@cs.utcluj.ro</u>				
2.3 Teachers in charge laboratory / project	e of semina	ars /	Prof. d	Prof. dr. eng. Alin Suciu - <u>alin.suciu@cs.utcluj.ro</u>				
2.4 Year of study	IV	2.5 Sem	lester	ester 8 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E		
DF-fundame			entală, l	DD — î	n domeniu, DS – de specialitate, DC – complementară	DS		
2.7 Subject category $DI - Impusă, DOp - c$		DOp–o	pțion	ală, DFac – facultativă	DOp			

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	1	Laboratory	2	Project	
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	14	Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture materia	l and no	otes, biblio	graphy							28
(b) Supplementary study in the library, online and in the field						22				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						26				
(d) Tutoring							0			
(e) Exams and tests						4				
(f) Other activities:						0				
3.4 Total hours of individual study	(suma	(3.3(a)3.3	3(f)))		80					
3.5 Total hours per semester (3.2+	3.4)				150					

3.6 Number of credit points

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer Programming (C), OO Programming (Java/C#), Logic Programming (Prolog), Operating Systems
4.2 Competence	All competences related to the above disciplines

6

5. Requirements (where appropriate)

5.1. For the course	Blackboard, Projector, Computer, Online platforms
5.2. For the applications	Multicore computers, Specific Software, Online platforms

6. Specific competence

C 1 Drefeesienel eenerster	C2 Droblems coluing using enceific Computer Science and Computer
6.1 Professional competences	C3 - Problems solving using specific Computer Science and Computer
	Engineering tools (1 credit)
	• C3.1 Identifying classes of problems and solving methods that are
	specific to computing systems
	• C3.2 Using interdisciplinary knowledge, solution patterns and tools,
	making experiments and interpreting their results
	 C3.3 Applying solution patterns using specific engineering tools and mehods
	C3.4 Comparatively and experimentaly evaluation of the alternative
	solutions for performance optimization
	 C3.5 Developing and implementing informatic solutions for concrete problems
	C5 -Designing, managing the lifetime cycle, integrating and ensuring the
	integrity of hardware, software and communication systems (1 credit)
	 C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality,
	 security and computing system's interaction with the environment and
	human operator
	• C5.2 Using interdisciplinary knowledge for adapting the computing
	system to the specific requirements of the application field
	• C5.3 Using fundamental principles and methods for security, reliability
	and usability assurance of computing systems
	 C5.4 Adequate utilization of quality, safety and security standards in information processing
	• C5.5 Creating a project including the problem's identification and
	analysis, its design and development, also proving an understanding of
	the basic quality requirements
	C6 - Designing intelligent systems (2 credits)
	 C6.1 Describing the components of intelligent systems C6.2 Using domain-specific tools for explaining and understanding
	 C6.2 Using domain-specific tools for explaining and understanding the functioning of intelligent systems
	 C6.3 Applying the fundamental methods and principles for specifying
	 Co.s Applying the fundamental methods and principles for specifying solutions for typical problems using intelligent
	 C6.4 Choosing the criteria and evaluation methods for the quality,
	 co.4 choosing the citteria and evaluation methods for the quality, performances and limitations of intelligent systems
	 C6.5 Developing and implementing professional projects for intelligent
	systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Developing the ability to identify the need for applying cryptographic methods for a given problem, and to properly implement them considering possible cryptanalytic attacks
7.2 Specific objectives	 Understanding the fundamental concepts of cryptography and cryptanalysis Ability to implement cryptographic algorithms using various programming languages (in C, Java, C#, Prolog, etc.) Ability to implement cryptanalytic algorithms using various programming languages (in C, Java, C#, Prolog, etc.)

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction, Fundamentals of Cryptology	2		
Classical encryption algorithms and their cryptanalysis (1)	2		
Classical encryption algorithms and their cryptanalysis (2)	2		
Cryptographically secure pseudo random number generators	2		

(CSPRNG)		
True random number generators (TRNG); statistical analysis	2	
One Time Pad – the perfect cipher	2	Lectures using
Stream ciphers	2	blackboard and
Block ciphers, AES	2	projector, interactive
Block ciphers – mode of operation	2	discussions.
Public key cryptography, RSA	2	
Digital signatures, RSA based	2	
Cryptographic hash functions	2	
Key management, Digital certificates	2]
Review, preparation for the final exam	2	

Bibliography

1. C. Paar, J. Petzl, T. Guneysu, Understanding Cryptography, Springer, 2024.

2. H. C.A. van Tilborg, *Fundamentals of Cryptology*, Kluwer Academic Publishers, 1999 (available online).

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction, Fundamentals of Cryptology	2		
Classical encryption algorithms and their cryptanalysis (1)	2		
Classical encryption algorithms and their cryptanalysis (2)	2		
Cryptographically secure pseudo random number generators (CSPRNG)	2	Practical laboratory works / programming	
True random number generators (TRNG); statistical analysis	2	exercises using	
One Time Pad – the perfect cipher	2	specific software	
Stream ciphers	2	tools	
Block ciphers, AES	2		
Block ciphers – mode of operation	2		
Public key cryptography, RSA	2		
Digital signatures, RSA based	2		
Cryptographic hash functions	2		
Key management, Digital certificates	2	1	
Laboratory Evaluation	2	1	

1. C. Paar, J. Petzl, T. Guneysu, Understanding Cryptography, Springer, 2024.

2. H. C.A. van Tilborg, *Fundamentals of Cryptology*, Kluwer Academic Publishers, 1999 (available online).

*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the course is aligned to the latest developments in the field and responds to both the development in the hardware technologies and the requirements coming from the industry.

10. Evaluation

Wwwwwww wa2sa	Assessment criteria	Assessment methods	Weight in the final grade
Course	Knowledge assimilated from the course material, interactivity during lectures. Ability to solve domain specific problems	Written and/or oral exam (E)	70%

Seminar	Ability to solve domain specific problems	Written test and/or Seminar homeworks sent/ received (S)	0%
Laboratory	Ability to solve problem using parallel programming techniques and technologies	Written test and/or Laboratory homeworks sent/ received (L)	30%
Project	-	-	-
	mance requirements: E ≥ 50% ; L ≥ 50% = 0.7*E + 0.3*L		

Date of filling in: 23.05.2024	Teachers	Title First name Last name	Signature
	Course	Prof. dr.eng. Alin Suciu	
	Applications	Prof. dr.eng. Alin Suciu	

Date of approval in the department

Head of department, Prof.dr.eng. Rodica Potolea

Date of approval in the Faculty Council

Dean, Prof.dr.eng. Mihaela Dînșoreanu