
1/4

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca
1.2 Faculty Faculty of Automation and Computer Science
1.3 Department Computer Science
1.4 Field of study Computer Science and Information Technology
1.5 Cycle of study Bachelor of Science
1.6 Program of study / Qualification Computer science / Engineer
1.7 Form of education Full time
1.8 Subject code 32.00

2. Data about the subject

2.1 Subject name Functional programming
2.2 Course responsible / lecturer Assoc. prof. dr. eng. Radu Răzvan Slăvescu - Radu.Razvan.Slavescu@cs.utcluj.ro
2.3 Teachers in charge of seminars /
Laboratory / project

Prof. dr. eng. Camelia Pintea - Camelia.Pintea@mi.utcluj.ro
Assist.drd.eng. István Császár - Istvan.Csaszar@cs.utcluj.ro

2.4 Year of study III 2.5 Semester 5 2.6 Type of assessment (E - exam, C - colloquium, V -
verification) E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DD

DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time

3.1 Number of hours per week 4 of
which: Course 2 Seminars

Laboratory 2 Project

3.2 Number of hours per
semester 56 of

which: Course 28 Seminars

Laboratory 28 Project

3.3 Time budget (hours/semester) for study:
(a) Manual, lecture material and notes, bibliography 18
(b) Supplementary study in the library, online and in the field 10
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 10
(d) Tutoring 4
(e) Exams and tests 2
(f) Other activities:

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 44

3.5 Total hours per semester (3.2+3.4) 100
3.6 Number of credit points 4

4. Pre-requisites (where appropriate)
4.1 Curriculum Data Structures and Algorithms Course
4.2 Competence This course assumes no prior knowledge of functional programming, but it is

advised to have at least one year of programming experience in a regular
programming language such as Java, C, C++.

5. Requirements (where appropriate)

5.1. For the course Whiteboard, beamer, computer
5.2. For the applications Computers, interpreters/compilers for the studied languages 100%

lab presence for final exam access

6. Specific competence

mailto:Radu.Razvan.Slavescu@cs.utcluj.ro
mailto:Camelia.Pintea@mi.utcluj.ro

2/4

6.1 Professional competences C2 Designing a software system in a functional manner
• C2.1 Identifying and describing the software components of the system
• C2.2 Explaining the role, interaction and functioning of each component
• C2.3 Building software components of some computing systems using

design methods, languages, technologies and tools specific to
Functional Programming

• C2.4 Implementing the software components in functional style, in an
idiomatic and efficient manner

• C2.5 Evaluating the functional and non-functional characteristics of the
computing system using specific performance metrics and proving its
corectness

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)
7.1 General objective Increasing the ability to develop correct and more concise code via the

functional paradigm elements (immutability, high level of abstractization,
formal proof of code correctness, easy code parellelization) and to understand
its underpinning formalism (lambda calculus)

7.2 Specific objectives Writing better code with the concepts introduced by functional programming:
- to write code in a functiional manner, with no state variables
- to see the advantages and disadvantages of different programming styles
- to use recursivity and its optimization
- to use high order functions
- to exploit lazy evaluation mechanisms and infinte structures
- to build formal proofs of program corectness
- to manipulate basic lambda expressions

8. Contents
8.1 Lectures Hours Teaching methods Notes
Introduction. Programming Paradigms. Basic concepts of 2

(Onsite
Slides,
Demos on
the
whiteboard,
New examples
Quick individual
work (1 minute)

programming in Haskell, Elm: functions, identifiers, recursion.
Basic concepts: recursion, constants, primitive data types, tuples, 2
infix operators, evaluation.
Basic concepts: local declarations, data types, polymorphism. 2
Lists: list construction, basic operations on lists. 2
Lists: list operators (generators, guards, list comprehensions). 2

Trees: alternative data, pattern matching, exceptions, binary trees,
list-tree conversions. 2

Trees: binary search trees, checking AVL balance property for
trees, printing. 2

Implementing operations on sets. Propositional reasoner 2

Higher-order functions: anonymous functions, partial application, 2
relations functions – data, combinator functions
Higher-order functions for lists (map, filter, fold). 2

Infinite data: lazy evaluation, unbounded objects, circular 2
structures.
Lambda calculus: Lambda notation, conversions, combinators. 2

Reasoning on program correctness: structural induction, 2
equivalence of functions, induction on the number of nodes.
Monads. Example of use cases. 2
Bibliography
1. Haskell - A Purely Functional Language, www.haskell.org
2. Elm – A Delightful language for reliable web applications, elm-lang.org
3. G. Hutton. Programming in Haskell, 2nd edition Cambridge University Press, 2016

http://www.haskell.org/

3/4

4. M. Lipovaca. Learn You a Haskell for Great Good. No Starch Press, 2011.
5. Raul Rojas, A Tutorial Introduction to the Lambda Calculus, FU Berlin, 2015

8.2 Applications – Seminars/Laboratory/Project Hours Teaching methods Notes
Introduction in Functional Programming using Elm 2

(Onsite) Exercises and
problem solving,
implementing
functions on the
computer,
Tracing algorithms
Miniprojects

Elm Types 2
Lists and Recursivity 2
Higher order Functions in Elm 2
Evaluation Elm 2
Miniapplication in Elm 2
Introduction in Haskell. Lists, Recursion 2
Haskell Type checking 2
Trees in Haskell 2
Haskell – High order functions 2
Haskell - Lazy evaluation, infinite lists. 2
Miniapplication in Haskell 2
Lambda Calculus 2
Evaluation Haskell 2

Bibliography
1. www.haskell.org
2. elm-lang.org
3. M. Lipovaca. Learn You a Haskell for Great Good. No Starch Press, 2011.
*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations
and employers in the field

The content of the class is similar to the contents taught at other international universities (Programming Paradigms,
Parallel and Concurrent Haskell). The course is focused on the techniques of Functional Programming which have been
adopted by the modern (multiparadigm) languages and also on the possibility of proving program correctness in a formal
manner. Students are encouraged to identify Functional Programming ideas in the current practice of local IT companies.

10. Evaluation

Activity type Assessment criteria Assessment methods Weight in the final
grade

Course Understanding functional programming
elements and its theoretical
background.
Class participation, Homework

Written exam/Moodle test
50%

Seminar - - -

Laboratory Quantity and quality of code in Elm,
Haskell
Ability to find and fix code bugs

Individual tests and mini-
applications

50%

Project - - -

Minimum standard of performance:
Understanding and code writing for the following concepts; Recursion, High Order Functions, Pattern Matching. Grade
calculus: 50% laboratory + 50% final exam
Conditions for participating in the final exam: Laboratory Mark Average ≥ 5 Conditions
for promotion: Exam Mark Average ≥ 5

http://www.haskell.org/

4/4

Date of filling in:
14.06.2024

Teachers Title First name Last name Signature

Course Assoc.prof.dr.eng. Radu Răzvan Slăvescu

Applications

Prof.dr.eng. Camelia Pintea

Assist.drd.eng. István Császár

Date of approval in the department
20.02.2024

Head of department,
Prof.dr.eng. Rodica Potolea

Date of approval in the Faculty Council
22.02.2024

Dean,
Prof.dr.eng. Mihaela Dînșoreanu

