SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study / Qualification	Computer Science / Engineer
1.7	Form of education	Full time
1.8	Subject code	1.00

2. Data about the subject

2.1	Subject name	Linear Algebra and Analytical Geometry			
2.2	Course responsible / lecturer	Prof. dr. Radu Peter- radu.peter@math.utcluj.ro			
2.3	Teachers in charge of applications	Prof. dr. Radu Peter- radu.peter@math.utcluj.ro Lect. dr. Liana Timbos - Liana.Timbos@math.utcluj.ro			
2.4	Year of Study	I 2.5 Semester	1	2.6 Type of assessment (E - exam, C-colloquium, V - verification)	E
2.7 Subject category	DF-fundamentală, DD-în domeniu, DS - de specialitate, DC-complementară	DF/DOB			
	DI-Impusă, DOp - opțională, DFac - facultativă				

3. Estimated total time

3.1	Number of hours per week	4	3.2	lectures	2	3.3	applications	2
3.4	Total hours in the teaching plan	104	3.5	lectures	28	3.6	applications	28
Individual study								Hours
Manual, lecture material and notes, bibliography								20
Supplementary study in the library, online, and in the field								4
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								21
Tutoring								0
Exams and tests								3
Other activities								0
3.7	Total hours of individual study		48					
3.8	Total hours per semester		104					
3.9	Number of credit points		4					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2	Competence	Competences in elementary Linear Algebra and Analytic Geometry: matrices, determinants, linear systems, vectors and lines in plane

5. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector
5.2	For the applications	Blackboard, video projector

6. Specific competences

6.1 Professional competences		- C1.1. Professional communication using scientific concepts, theory and methods used in system engineering. C1.2. Presentation and motivation of solution to problems from system engineering using techniques, concepts and principles from mathematics, physics, etc. - C1.3. solving usual problems in system engineering by identifying techniques, principles and methods from mathematics. - C1.4. Identifying the potential, advantages and disadvantages of methods from system engineering, documentation of projects and using mathematical methods. - C1.5.Use of mathematical methods in projects in system engineering.
6.2 Cross competences	N/A	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in linear algebra and analytic geometry.
7.2	Specific objectives	Use of the matrix calculus (in the general context of linear algebra) in order to solve problems in engineering. Use of the vectorial calculus (in the general context of analytic geometry) in modelling and solving practical problems concerning spatial forms.

8. Contents

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Abilities of understanding and using creatively the concepts and proofs		Written examination	20%			
Applications	Abilities of solving problems and applying algorithms		Written examination	80%				10.4. Minimum standard of performance
:---								
Ability to present coherently a theoretical subject and to solve problems with practical content.								

Date of filling in 26.05 .2024	Teachers	Title First name Last Name	Signature
	Course	Prof.dr. Ioan Radu Peter	
	Applications	Prof.dr. Ioan Radu Peter	

Date of approval in the department	Head of Department of Mathematics, Prof.dr. Dorian Popa
20.02.2024	Dean, Date of approval by the Faculty Council 22.02 .2024

