SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Cyber-phisical systems
1.7	Form of education	Full time
1.8	Subject code	8.00

2. Data about the subject

2.1	Subject name				Augemented and vir	tual reality	
2.2	Subject area				Engineering		
2.2	Course responsible/lecturer				Assoc prof. dr. ing. Levente Tamas		
2.3	B Teachers in charge of seminars				Assoc prof. dr. ing. Levente Tamas		
2.4 Y	2.4 Year of study 1 2.5 Semester 2			2	2.6 Assessment		E
2.7 5	2.7 Subject Formative category				·		DS
cate	category Optionality						DI

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar		3.3 Laborator	2	3.3 Proiect	0
3.4 Total hours in the	100	of which	3.5	14	3.6		3.6	28	3.6	0
curriculum	100	or which	Course	14	Seminar		Laborator	20	Proiect	0
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography						1	.5			
(b) Supplementary study in the library, online and in the field						1	.5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	.5			
(d) Tutoring										
(e) Exams and tests							3			
(f) Other activities					1	.0				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General engineering knowledge. Advanced mathematics.
4.2	Competence	Software engineering, system analysis and design

5. Requirements (where appropriate)

5.1	For the course	Optional
5.2	For the applications	Compulsory

6. Specific competences

The design/adaptation/usage of the augmented/virtual reality systems in the Industry X.0
specific contexts.
Innovative solutions for industrial perception/robot interaction with AR/VR systems
Learning, practising and using AI based robotics systems
Cross competences for desing/analysis/solving of real life problems for autonomous robots
with AR/VR interfaces
Communication competences for using AI based robotics terminology and scientific language
The cross-domain ability of adopting innovative solutions for the emerging robotics and AI
domain

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The adaption and usage of augmenter/virtual reality solutions for the Industry X.0
7.2	Specific objectives	Robotics and AI specific technologies

8. Contents

8.1. Lecture (syllabus)		Teaching methods	Notes
1. General aspects of the design/implementation of the AR/VR systems in the era of Industry X.0	2		
2. Main principles and architecture for augmented and virtual robotics&AI systems	2	Presentation	The presentations
3. Main components of the AR/VR systems	2	using	include real
4. AI based AR/VR systems Echipamente specifice a unui sistem AR/VR	2	beamer/online shareing possible	life examples as well as
5. AI based perception for the AR/VR	2	shareing possible	case studies.
6. Advaced localization and mapping in the 3D space	2]	
7. AI based 3D reasoning within industrial systems	2		
Bibliography			

ography

1. A. Blaga, L. Tamas: AR applications în MES, 2021

2. D. Scaramuzza et.al. Autonomous mobile robots. MIT Press 2008.

3. Gh.Sebesteyen –Informatica industriala.Ed. Albastra Cluj-N. 2006

4. S. Thrun et. al.: Probabilistic Robotics, MIT, 2006

8.2. Laboratory	Number of hours	Teaching methods	Notes
Introduction to AR/VR frameworks	4	Practical work	
Environment perception for the augmented world	4	including	Encouraging team work
3D perception of the industrial environments	4	computation	

Localization and tracking for AR/VR applications	2	and discussion/or online variant on Teams	2-3 students in a group
Bibliography			
Bibliografie			
www.rocon.utcluj.ro/arvr			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Lucrări practice pentru agenți cu AR/VR în mediul Industry X.0 Comunicarea cu roboți în era IA Sisteme de percepție bazate pe IA

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the
Activity type	10.17.050551101100110110	10.27636355667677676666	final grade
10.4 Course	Principii teoretice Capacitatea de a rezolva aplicații Capacitatea de analiza	Examen scris / în caz de forță majoră, on-line platforma Teams	0,6 (6 pts from 10)
	și sinteza.	r	
10.5 Laboratory	Parcurgerea lucrărilor de laborator. Capacitatea de a finaliza și interpreta datele lucrării	Test pe baza aplicațiilor laborator/ în caz de forță majoră, on-line platforma	0,4 (4 pts from 10)
10.6 Minimum standa	ard of performance		
5 out of 10			

Date of filling in:		Title Surname Name	Signature
16.06.2024	Lecturer	Conf. dr. ing. Levente Tamas	
	Teachers in charge of	Conf. dr. ing. Levente Tamas	
	application		