SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	System Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Automation and applied informatics
1.7	Form of education	Full time
1.8	Subject code	6.00

2. Data about the subject

2.1	1 Subject name			Physics				
2.2	2 Subject area			Physics				
2.3	Course responsible/lecturer			Prof. Dr. Abil. Radu Fechete <u>rfechete@phys.utcluj.ro</u>				
2.4	Teachers in charge of laboratory		Lect. Dr. Dumitrita Corpodean					
2.4			Dumitrita.Corpodean@phys.utcluj.ro					
2.5	Year of study	1	2.6 Semester	1	2.7 Assessment	Col.	2.8 Subject category	DF/DI

3. Estimated total time

3.1 Number of hours per week	4	3.2 of w	hich, course:	3	3.3 applications:	1
3.4 Total hours in the curriculum	100	3.5 of w	hich, course:	42	3.6 applications:	14
Individual study						hours
Manual, lecture material and notes	s, bibliogra	aphy				6
Supplementary study in the library, online and in the field				10		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays				14		
Tutoring					6	
Exams and tests				3		
Other activities				5		
3.7 Total hours of individual stu	ıdy	44				•
0 0 T (11		1.40				

3.8	3.8 Total hours per semester	
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Good knowledge of high school physics Good knowledge of high school mathematics
4.2	Competence	Some knowledge in operating computers (Word, Power Point, Excel, www).

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	N/A

6. Specific competences

	The students will be able to:
	• Manipulate the main physical quantities and measurement unit by using the fundamental physical
	laws characteristic to the studied phenomena during the solving of the home work problems (the
S E	seminar is missing).
na	• Use the measurement devices during the laboratory time, like: ammeter, voltmeter, ohmmeter,
isic	thermometer, thermocouple, spectroscope, microscope, luxmeter.
fes	• Evaluate the measurement errors, the absolute and the relative errors.
Professional	• To define and apply some basics concepts, physically principles and theory applied to computer
сн	science and engineering.
	• To identify and analyze specific problems and to elaborate strategies to solve them.
	• To be able to identify diverse physical systems, to describe their properties and relations/interactions
	between the system components.
s	The students will be able to:
Ice	• Draw graphics of the variation of a specific quantity function of various parameters which are
) SSS ten	measured experimentally.
Cross	• Plot the graphics using computer scientific software like Origin.
J mo	• Operate with units with different order of magnitude and with the physical constants
ర	• Write a paper into a scientifically form using a MS Word template.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	 Introduction of the most important physical quantities that are encountered in automation engineering. Introduction of the main laws of physics that play a central role in automation engineering applications.
7.2	Specific objectives	 Understanding of the most important laws of classical mechanics Knowledge of the oscillatory and wave phenomena Knowledge of the sound characteristics and transfer phenomena Knowledge of the electrical, magnetically and electromagnetic phenomena. Knowledge of the quantum mechanical phenomena. Knowledge of the quantum mechanical phenomena. The ability to document alone in a given scientific problem using the books library and the Internet. The ability to elaborate and to present a report on a given scientific problem The ability to represent graphically the physical quantities. The ability to use commercial computer programs for interpretation of the experimental data. The ability to solve a given physical problem and to express it in a mathematical form. The ability to work in a team for solving real physical problems

8. Contents

8.1. I		Teaching methods	Notes
1.	Introduction in Physics. Fundamental and derivate physical quantities and their measurement units. Basics of kinematics: Elements of motion (reference system, trajectory, space).	exposure and	

	x y 1 4, y 4 , 4 1, 1 1, 1 1, 1 1, 1 1, 1	· · · · ·
	Velocity. Linear motions with constant velocity. Acceleration.	curricular subjects,
	Linear motion with constant acceleration.	narrative-story related to the
	Kinematics: Curvilinear motions (trajectory, velocity and	physics history and
	acceleration). Circular motion (angle, circular velocity, circular	association with
2.	acceleration, law of motion with uniform angular velocity, law of	real life facts.
	motion with uniform angular acceleration). Relations between	Didactic
	linear and circular quantities. Specific measurement units.	conversation
	Dynamics: 1^{st} , 2^{nd} and 3^{rd} principles of dynamics. Inertial mass.	(heuristics and
		catechetic) in which
2	Force. Linear momentum. Mechanic work. Power. Energy	the students are
3.	(kinetic, potential, total). Momentum of force. Angular	involved.
	momentum. Conservations laws of: linear momentum, kinetically	Demonstration of
	momentum, energy.	physical laws in mathematical form
	Oscillatory motion: Linearly harmonically oscillator. Dumped	and using objects to
4.	oscillations. Forced oscillations, resonance. Superposition of	represents the
	parallel and perpendicular oscillations.	physical phenomena
	Waves. Wave function. Differential equation. Huygens' principle.	at reduced scale.
	Characteristic phenomena: reflection, refraction, interference,	Demonstration with
5.	diffraction, dispersion, absorption. Elastic waves. Longitudinal	actions performed
	waves in solids, liquids and gases. Standing waves.	by students which
	Acoustics: Definition. Sound sources. Fundamental sound and	are asked to: extract
	superior harmonics. Sounds quality (sound intensity, sound	from problem the
6.		significant data, to
	pressure, sound level, acoustic level, timbre, noise). Closed	observe, identify and classify
	chambers acoustics, sound reverberation, reverberation time.	physical laws and
	Electricity. Introduction. Electric charge. Coulombian Force.	types of motions.
7.	Electric Field. Electric Field intensity. Electric Flux. Gauss law for	Demonstration with
	the electric field. Electric field work.	technical means like
	Electric current. Definition. Electric current intensity. Density of	multimedia
0	the electric current. Electrons in solids (Drude's model).	presentations
8.	Electrically conductibility. Ohm's law. Elements of electric	(Power Point
	circuit. Operational amplifiers.	presentation on PC, video-projections).
	Magnetism: Magnetic field. Sources of the magnetic field. Lorentz	Problematization
9.	force. Magnetic flux. Gauss law for the magnetic field. Element of	(problematize)
2.		-
	current. Magnetic force (Laplace force).	presentations of
10	Biot-Savart law. Magnetic field produced by a liner conductor.	laws and principles
10.	Magnetic field produced by a loop. Ampere's law.	of general physics
	Electromagnetic induction. Faraday's law.	with situations from
	Maxwell's equations (differential and integral forms).	real life, and
11	Electromagnetic waves: Maxwell's equations without sources,	situations from the
11.	velocity, transversally, intensity, and range. Photometrical	future work of
	quantities. Polarization of light.	students.
	Quantum mechanics: thermal radiation, photoelectrical effect,	1
12.	Compton effect, light pressure. Waves attached to particles.	
	Davisson-Germer experiment. Wave group.	
10	Schrödinger equation. Wave function properties. Potential gap.	
13.	Potential barrier. Hydrogen atom. Quantum numbers. Spin quantic	
	number (magnetic loop, magnetic moment, orbital magnetic	

	moment). Experimental proves of energy quantifications. Laser.		
	Holography.	-	
	Electrons in solid body. Energy bands. Metals. Hall effect. Contact		
	potential difference. Thermoelectrically effect. Peltier effect.		
14.	Intrinsic semiconductors. Extrinsic semiconductors. Magnetic		
17.	properties of solid body: magnetic moment, orbital magnetic		
	moment, diamagnetism, paramagnetism, ferromagnetism.		
	Superconductibility.		
Bibli	ography		
I	n UTC-N library		
2	. R. Fechete, Fundamental physics for engineers, course notes.		
3		ca 2004	
4			
5			
	Iultimedia teaching aids		
6			
7			
8			
9	http://users.pandora.be/educypedia/education/physicsbytopic.htm		
	Applications/Seminars	Teaching methods	Notes
1.	Work Protection. The study of thermoelectrically effect.	Heuristic discovery in	
2.	Longitudinal and transverse standing ways	laboratory (at applications seminars-	
۷.	Longitudinal and transverse standing waves.	laboratory) of some	
		physical phenomena.	
3.	Optical spectroscopy.	Problematization	
		(problematize) presentations of laws	
4.	The study of photoelectric effect.	and principles of	
		general physics with	
5	The study of Hell Effect	situations from real	
5.	The study of Hall Effect.	life, and situations from the future work	
		of students.	
6.	The determination of the energy gap of a semiconductor.	Role-play by students	
		under the teaching	
		supervision for some	
		-	
7.	Polarizations of light.	basics physical	
7.	Polarizations of light.	-	

R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara, I. Coroiu, C. Badea, E. Culea, I. Cosma, N. Serban, Fizica: Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014).

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field.

The Physics course aim to give to students the basics knowledge and abilities to interact with a technical environment (measurement technique, measurement units, physical law - mechanics, waves, electricity and magnetism - to realize an interface between environment properties and computer, to register an electric signal from a sensor, to understand the meaning of the signal (physical property) and to act accordingly).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
Course	Colloquium examination assumes a test of 1 hour (part 1) and 1 hour (part 2) from theoretical subjects	Written test	70 - 90 %				
Applications	Students have the possibility to submit a scientific essay, a PowerPoint presentation or to build a practical project (usually based on sensors connected to an Arduino microcontroller, and the data can be processed using various software)	Written report or practical project with microcontrollers and various sensors, actuators. Oral PowerPoint presentation Frontal presentation	10 - 30 %				
	n standard of performance						
	Students must obtain a minimum of 2.75 points for the written test and to accumulate 1.75 points (total 4.5) for the practical applications.						
10.5 Suppleme	entary activities						
Students can	write theoretical papers or carry out	and to present practical projects	(based on sensors,				
actuators, micr	rocontrollers, but not only) alone or i	n teams for which they can receive	e extra points at the				
final grade.							

Date of filling in:	Teachers in charge	Tite Surname NAME	Signature
2024	Course	Prof. Dr. Radu FECHETE	
	Applications	Lecturer Dr. Dumitrița CORPODEAN	

Date of approval in the department of Automation

Head of Department Prof.dr.ing. Honoriu VĂLEAN

Date of approval in the Board of the Faculty of Computer Science and Automatics

Dean Prof.dr.ing. Mihaela DÎNŞOREANU