Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Subject code	50.10

2. Data about the subject

2.1 Subject name		Elect	ctrical Machines and drives				
2.2 Course responsible/lec	ponsible/lecturer Prof. Eng. Loránd Szabo, PhD						
2.3 Teachers in charge of a	applic	ations	ons Lect. Eng. Adrian-Augustin POP				
2.4 Year of study	4	2.5 Semes	ter	1	2.6 Assessment (E/C/V)	C	
2.7 Type of subject DF – fundamental DOB – compulsory			tal, DID – in the field, DS – specialty, DC – complementary DID				
			, DO	DOP – elective, FAC – optional			

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	course	28	Seminar		Laboratory	28	Project	
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblio	graphy							12
(b) Supplementary study in t	he libr	ary, online	e, and in	the fi	eld					12
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							12			
(d) Tutoring								5		
(e) Exams and tests								3		
(f) Other activities:										
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 44										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Electrotechnics, Electronic Measurements, and Sensors, Power Electronics in
	Automatic Control
4.2 Competence	

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competences

6.1 Professional competences	C1 Operating with basic concepts of mathematics, physics, measurement science, mechanical engineering, chemical engineering, electrical engineering in systems engineering C3 Operating with fundamentals of control engineering, process modeling,
	simulation, identification and analysis methods, and computer-aided design.
6.2 Cross competences	

7. Course objectives

7.1 General objective	To teach the students about configuration and deployment of industrial
	process control, of robots and flexible manufacturing lines and choice of
	equipment, tuning and putting into service of related structures.
7.2 Specific objectives	To offer to the students diverse occupational skills, as:
	•Understanding of the principles of the energy conversion systems used in
	automation systems.
	 Knowledge and ability to apply the concepts, principles, and theories of
	electrical machines and drives in designing and operating advanced
	automation systems.
	•Understanding the implications of the electrical drive system's parameters
	on the performance of the entire automation systems incorporating those
	drives.
	Practical skills:
	•To be able to select an adequate electrical machine and its control system
	for wide automation application tasks.
	•To be able to build up and operate the feeding and/or control circuitry of
	electrical machines and drives.
	•To use laboratory equipment to analyze the static and dynamic
	characteristics of a wide range of electrical machines.
	Abilities:
	•To use classical and digital measurement instruments for measuring in the
	laboratory the electrical machines
	•To use specific measurement instruments in the field of electrical machines
	and drives: torque meters speedometers, position encoders, etc.
	•To connect, to set and ti use frequency converters for feeding electrical
	machines

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction to electromechanical energy conversion systems	2	Presentation	Power Point and video
Physical background of the electrical machines and drives (governing laws, materials, etc.)	2		projector
Transformers (one-phase and three-phase)	2		
dc machines (construction, working principles, types, main applications, etc.)	2		
Induction machines (construction, working principles, types, main applications, etc.)	2		
Synchronous machines – both types having electromagnetic and permanent magnet excitation – (construction, working principles, types, main applications, etc.)	2		
Special electrical machines (universal motor, spilt-phase induction machine, switched reluctance motor, brushless dc machines, stepper motors, permanent magnet motors, variable reluctance motors, linear motors, electromagnetic actuators, etc.)	6		
Control of electrical machines (starting, speed variation, breaking, and stopping)	4		
Advanced control methods used for electrical drives (voltage control, U/f control, field-oriented control, direct torque control, etc.)	2]	
Electric machines and drive systems selection criteria and requirements used for typical automation applications	2		
Mathematical models, simulation, and system integration of electrical machines and drives	2		
Bibliography			

- 1. Boldea, I., Nasar, S.A., Electric machine dynamics, 1986.
- 2. El-Hawary, M.E. Principles of electric machines with power electronic applications, 2002.
- 3. Gottlieb I.M., Electric motors & control techniques, 1994.
- 4. Kazmierkowski, M., Tunia, H., Automatic control of converter-fed drives, 1994.
- 5. Viorel, I.A., Henneberger, G., Variable reluctance electrical machines, 2001.

Supplementary course outlines are available at the course's website:

http://users.utcluj.ro/~szabol/Materiale_didactice/Electrical_Machines & Drives.htm

and at the Teams group of the course (<u>https://teams.microsoft.com/l/team/19%3asxo5dPfrelOpn2YpHP-eo8FpdfiTGNIJSZ4mql1X4p01%40thread.tacv2/conversations?groupId=db1360e7-e794-4528-b723-778953d05348&tenantId=a6eb79fa-c4a9-4cce-818d-b85274d15305).</u>

8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes		
Introductive session (safety provisions in the lab, general		Practical	Test benches,		
presentation of the lab, application program	4	experimentations and	power		
presentations)		demonstrations in the	supplies, data		
Transformers (one-phase transformer operating tests,		laboratory	acquisition		
no-load and symmetrical load operating of the	4		systems,		
three-phase transformer)			analog, and		
Induction machines (no-load and short circuit operating	4		digital		
regimes and general operating characteristics)	4		measuring		
Synchronous machines (the characteristics of the			devices		
autonomous synchronous generator, grid connection,	4				
and parallel operation of the synchronous generators)					
DC machines (separately and series excited dc machine's	4				
operating tests, dc. generator characteristics)	4				
Switched reluctance machines (static characteristics,	4				
steady-state working regime)	4				
Frequency converter fed induction machines operating	4				
tests	4				
Bibliography					
Laboratory practical guide files are available at the course's	s website:				
http://users.utcluj.ro/~szabol/Materiale_didactice/Electrical_Machines & Drives.htm					
and at the Teams group of the lab					
(https://teams.microsoft.com/l/team/19%3atXC8WmpN3ziQefAu6HjSPAK1WxoNMO_oY8PsRLaQjKs1%40thread.ta					
cv2/conversations?groupId=40ac21ad-ac4c-4138-8405-82d94e616457&tenantId=a6eb79fa-c4a9-4cce-818d-					
<u>b85274d15305</u>).					

9. Bridging course contents with the expectations of the representatives of the community, professional associations, and employers in the field

The course offers several skills regarding the selection and analysis of a suitable electric motor and its supply & control system for certain industrial processes.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Answering a quiz test (7 questions) regarding the content of the course	Written examination at the end of the semester	7 points (70%)			
Laboratory	Solving a test on the performed labs	Laboratory write up	2 points (20%)			
10.4 Minimum standard of performance: Exam (E)>2; Lab (L)>0.5 Grade computation formula: N=1 (official)+E+L						

Date of filling in:		Title Firstnam	e NAME	Signature
02.06.2024	Course	Prof. Eng. Lorá		
	Applications	Lect. Eng. Adrian-Augustin POP		
Date of approval by t	the Department Bo	oard	Head of Departam Prof.dr.ing. Honor	ient iu VĂLEAN
Date of approval by t	the Faculty Council		Dean Prof.dr.ing. Mihae	la Dinsoreanu