Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	47.00

2. Data about the subject

2.1 Subject name		Robe	ot Co	Control systems			
2.2 Course responsible/le	ecture	r ŞL. dr. Ing Anastasios NATSAKIS – tassos.natsakis@aut.utcluj.ro					
2.3 Teachers in charge of	appli	cations	ŞL dr. Ing. Anastasios NATSAKIS – tassos.natsakis@aut.utcluj.ro				
2.4 Year of study	4	2.5 Semes	ter	er 1 2.6 Assessment (E/C/V) E			
DF – fundamental, DD – in the field, DS			– in t	he field, DS – specialty, DC – complementary	DD		
2.7 Type of subject DI – compulsory, I		D <i>O</i> –	electi	ive, Dfac – optional	DI		

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminar	0	Laboratory	2	Project	1
3.2 Number of hours per	120	of	Course	20	Cominor	0	Laboratory	20	Droject	1.4
semester	130	which:	Course	28	Seminar	0	Laboratory	28	Project	14
3.3 Individual study										
(a) Manual, lecture material and n	otes, b	ibliograp	hy							28
(b) Supplementary study in the library, online and in the field						14				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14				
(d) Tutoring						2				
(e) Exams and tests							2			
(f) Other activities:						0				
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 60										
3.5 Total hours per semester (3.2+3.4) 130										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Systems Theory, Process modeling, Linear Algebra and Analytical Geometry, Python programming
4.2 Competence	Solve problems in the field of systems engineering by identifying proper methods and techniques applying mathematics and numerical calculus

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Presence is mandatory

6. Specific competences

6.1 Professional competences	C3 Operating with fundamentals of control engineering, process modelling, simulation, identification and analysis methods, and computer aided design.
6.2 Cross competences	

7. Course objectives

7.1 General objective	Acquire knowledge in design, programming and operating industrial robots.
7.2 Specific objectives	Industrial robots modelling, Robot control algorithms, Robot programming,

Industrial	ann	lication	s
muustiiai	app	incation	3

8. Contents

8.1 Lecture	No. hours	Teaching methods	Notes		
Introduction to Robotis	2				
Forward kinematics – Homogeneous Transformations	2				
Forward kinematics - Denavit-Hartenberg convention	2				
Jacobian matrix	2	Presentation,			
Inverse kinematics	2	Examples, Practical			
Dynamic modeling	2	applications			
Introduction to industrial robots programming	2				
Programming and Control of robots	8				
Other types of robots (mobile, drones, underwater	6				
Bibliography					
1. Philip J.Mc.Kerrow – Introduction to Robotics – Addison-Weslwy	Publ.Co.,199	95.			
2. John J.Craig – Introduction to Robotics (Mechanics and Control)	– CRC Press 2	2005.			
3. Lazea Gh., E. Lupu, P. Dobra- Sisteme de conducere a robotilor si	fabricatie inte	egrata. Ed.Mediamira, 2	1998.		
4. Mark W. Spong - Robot modeling and control – John Willey & So	ons, 2004.				
5. Shuai Li - Kinematic Control of Redundant Robot Arms Using Ne	ural Network	s, 2019.			
8.2 Applications (laboratory)	No. hours	Teaching methods	Notes		
Coordinate systems	2				
Forward kinematics	2				
Denavit-Hartenberg convention	2				
Inverse kinematics	2	Practical applications, numerical methods			
Dynamic modeling	4				
Control design for industrial robots	4				
Industrial robots programming	4				
Applications for object manipulation	2				
Applications on other robot types	4				
Evaluation	2				
Bibliography					
1. Philip J.Mc.Kerrow – Introduction to Robotics – Addison-Weslwy	Publ.Co.,199	95.			
2. John J.Craig – Introduction to Robotics (Mechanics and Control)	– CRC Press 2	2005.			
3. Lazea Gh., E. Lupu, P. Dobra- Sisteme de conducere a robotilor si	fabricatie inte	egrata. Ed.Mediamira, 2	1998.		
4. Mark W. Spong - Robot modeling and control – John Willey & So	ons, 2004				
5. Peter Corke – Robotics toolbox for python			-		
8.3 Applications (project)	No. hours	Teaching methods	Notes		
Topic choice	1	Dreatical			
Model implementation for selected topic	8	Practical			
Interface creation and control methodology for selected topic	4	applications,			
Reporting and presentation	1				
Bibliography					
1. Ramkumar Gandhinathan - ROS Robotics Projects – Packt publis	hing, Dec 201	19			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Demonstration of understanding of principles of robotic structures, modeling, control and applications	Written examination	60%
Laboratory	Ability to construct robotic simulations and design controller strategies	Computer examination	30%
Project	Ability to construct basic robotic simulations using ROS	Report	10%
Minimum standar Final mark (course	d of performance: a, laboratory, and project) ≥ 5		

Date of filling in:		Title First name NAME	Signature
06.06.2024	Course	Ş.L dr. Ing. Anastasios NATSAKIS	
	Applications	Ş.L dr. Ing. Anastasios NATSAKIS	

Date of approval by the Department Board

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council

Dean Prof.dr.ing. Mihaela Dinsoreanu