Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Code	4.00

2. Data about the subject

2.1 Subject name		Linear Electronic Circuits				
2.2 Course responsible/lec	turer		Prof. Oltean Gabriel, Ph.D– gabriel.oltean@bel.utcluj.ro			
2.3 Teachers in charge of applications		Assoc.prof. Sipos Emilia, Ph.D – emilia.sipos@bel.utcluj.ro				
2.4 Year of study	Ι	I 2.5 Semester I 2.6 Assessment: Ex		Ι	2.6 Assessment: Exam	
2.7 Type of subject						

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	1	Laboratory	1	Projec t	-
3.2 Number of hours per semester	125	of which:	course	28	Seminar	14	Laboratory	14	Project	-
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblic	ography							28
(b) Supplementary study in t	he libr	ary, online	e and in t	he fie	ld					7
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						28				
(d) Tutoring							3			
(e) Exams and tests							3			
(f) Other activities:						-				
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3	3.4)				125					
3.6 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.2 Competence	Basic knowledge about electrical signals, passive electronic components (R, C)

5. Requirements (where appropriate)

5.1. For the course	Onsite / Online, Microsoft Teams
5.2. For the applications	Onsite / Online, Microsoft Teams

6. Specific competences

· · ·	
6.1 Professional competences	C1 - Operating with basic concepts of mathematics, physics, measurement science, mechanical engineering, chemical engineering, electrical engineering
	in systems engineering
	C1.1 - Using the concepts, theories and methods of the fundamental
	sciences of systems engineering in professional communication
	C1.2 - Explaining the problems to be solved and the argumentation of the
	solutions in system engineering using the techniques, concepts, and methods of mathematics, physics, technical graphics, electrical engineering and
	electronics.
	C1.3 - Solving common problems of systems engineering by identifying the appropriate techniques, principles, methods and application of mathematics,
	with emphasis on numerical methods.

	 C1.4 - Assessing the potential, advantages and disadvantages of the methods and procedures of the systems engineering field, the scientific documentation level and the consistency of project applications using mathematical techniques and other scientific methods. C1.5 - Development of projects in the field of systems engineering by selecting and applying mathematical and other scientific methods specific to the field.
6.2 Cross competences	N/A

7. Course objectives

7.1 General objective	Developing the competences regarding the use of electronic devices, regarding the use, analysis and (re)design of fundamental electronic circuits.
7.2 Specific objectives	 Recognizing and understanding basic concepts specific to electronic devices, fundamental electronic circuits. Developing skills and abilities necessary for the use of electronic devices in simple electronic circuits. Developing skills and abilities necessary for the use of electronic circuits. Developing skills and abilities for the theoretical and experimental analysis of electronic circuits. (Re)design of electronic circuits.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
1. Introduction. Fundamentals: electrical signals, relations and			
theorems for electric circuits. RC circuits in the time and	2		
frequency domains			
2. Diodes. Operating principle. DR circuits. Single-phase	2		
rectifiers with capacitive filter. Logic circuits with DR.	-		
3. Zener Diode. Parametric voltage regulator. LED. 7-segment	2		
display.			
4. MOSFET Logic Circuits. MOSFET operation as a switch.	2		
Logic circuits: NOT, NAND, NOR. Noise margins.			
5. Operational amplifier (op amp). Op-amp terminals.	2		
Op-amp operation. Ideal op amp. Modes of use.			
6. Simple op-amp comparators. Inverting and	2	Presentation,	
noninverting comparators. Voltage transfer		heuristic	
characteristic. Waveforms.		conversation,	Use of .ppt
7. Positive feedback op-amp comparators. Inverting and	2	exemplification,	presentation,
noninverting comparators. Voltage transfer		problem	projector,
characteristic. Waveforms		presentation,	blackboard
8. Negative feedback op-amp amplifiers. Inverting,	2	teaching exercise,	
noninverting amplifiers: voltage transfer characteristic,		formative evaluation	
waveforms, gain, input and output resistances.			
9. Op-amp applications: summing amplifiers, differential	2		
amplifiers, voltage domain conversion circuits.			
10. DC voltage regulators. Parametric regulators. Linear	2		
voltage regulators with op amp. Increasing the output			
current. Over - current and short - circuit protection.			
11. Integrated voltage regulators. The 723 voltage	2		
regulator. Three – terminal fixed regulator. Switching			
voltage regulators.			
12. Sinusoidal oscillators. Oscillation criterion. RC	2		
oscillators. Op – amp and Wien bridge oscillators.			

Automatic control of the amplitude. Op amp and RC					
ladder network oscillator.		4			
13. Nonsinusoidal oscillators. Astable multivibrators.	2				
Astable multivibrator with one op – amp. Astable					
multivibrator with an integrator and a comparator.					
Quartz – crystal clock generator. LM555 timer.					
14. Recapitulation. Exam preparation	2				
Bibliography					
1 Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, IS	BN 973-662	-220-7, 2006; 317 pag.			
2. Oltean, G., Circuite electronice, UT Pres, Cluj-Napoca, 2007, ISE	3N 978-973-	662-300-4, 203 pag.			
3. Sipos, Emilia, Ivanciu, Laura, Dispozitive Electronice. Probleme	rezolvate, u	J. I. PRESS, ISBN 978-000	-/3/-191-8,		
2010; A Sedra A S Smith K C Microelectronic Circuits Fifth Edition.		versity Press			
ISBN: 0-19-514252-7, 2004.		Versity i ress,			
5. Oltean, G, Fundamentals of Electronic Circuits, on-line: http://	/www.bel.ut	cluj.ro/dce/didactic/fec	_aai/		
8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes		
SEMINARS					
1. Fundamentals	2				
2. Diodes	2				
3. MOSFET logic circuits. 7-segment display	2				
4. Op-amp comparators	2		Lise of		
5. Op-amp amplifiers	2		laboratory		
6. Voltage regulators. Integrated voltage regulators	2	Didactic and	instruments,		
7. Sinusoidal oscillators. Nonsinusoidal oscillators	2	experimental proof,	experimental		
LABORATORY		didactic exercise,	boards,		
1. Lab instrumentation. RC circuits	2	teamwork	computers,		
2. Applications of DR circuits	2		smart board,		
3. MOSFET logic circuits	2	4	DIACKDUALU		
4. Op-amp voltage comparator	2				
5. Op-amp basic amplifier	2				
6. Sinusoidal Oscillator. Audio Signals	2				
7. Lab do-overs. Activity concluding	2				
Bibliography					
1. Oltean, G., Circuite electronice, UT Pres, Cluj-Napoca, 2007, ISBN 978-973-662-300-4, 203 pp.					
On – line references					
1. Oltean, G. Fundamentals of Electronic Circuits, on-line: <u>http://www.bel.utcluj.ro/dce/didactic/fec_aal/</u>					

2. Ivanciu, Laura, Sipos, Emilia, Electronic Devices, UTPress, Cluj-Napoca, ISBN 978-606-737-639-5, 2023, on-line https://biblioteca.utcluj.ro/files/carti-online-cu-coperta/639-5.pdf

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the Romanian Agency for Quality Assurance (ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The level of theoretical knowledge and practical skills acquired for the analysis and (re)design of electronic circuits	Written exam: problem solving	E, max 10 pts. 50%
Seminar	The level of the abilities acquired for problem solving of electronic circuits	Continuous formative evaluation	S, max. 10 pts. 25%

Laboratory	The level of the abilities acquired for experimental analysis of electronic circuits	Continuous formative evaluation	L, max. 10 pts. 25%			
Project	-	-	-			
Minimum standa	rd of performance:					
- Recognizing and	d understanding basic concepts specific to ele	ctronic devices, fundamental electr	onic circuits.			
- Analysis of circu	its with diodes, LED, ZD					
- Structure and ar	nalysis of logic circuits with MOS transistors					
- Structure and ar	nalysis of op-amp comparators (VTC, waveforr	ns)				
- Structure and ar	nalysis of op-amp amplifiers (gain, VTC, wavef	orms)				
- Structure and an	nalysis of voltage regulators (reference, outpu	t voltage and current, protection)				
- Structure and an	nalysis of signal generators (condition for oscil	lation, waveforms, oscillation frequ	iency)			
- Elements referri	ing to the design and redesign of some fundar	nental electronic circuits.				
- Finding the perf	- Finding the performances of electronic circuits by experiments / simulation					
- Connection and use of electronic instruments in laboratory/simulator as well as the experimental/simulator						
circuits for the stu	udy of fundamental electronic circuits					
- Recording and a	nalysis of numerical data obtained experimen	tally/by simulation				

L≥5, E≥4	Mark = min(10; 0.5E+0.25L+0.25S)
----------	----------------------------------

Date of filling in: 08.06.2024		Title Firstname NAME	Signature
	Course	Prof. Gabriel OLTEAN, PhD	
	Applications	Assoc.prof. Emilia ŞIPOŞ, PhD	

Date of approval by the Department Board

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Dean Prof.dr.ing. Mihaela Dinsoreanu