SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	CYBER PHYSICAL SYSTEMS
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	System Engineering
1.7	Form of education	Full time
1.8	Subject code	3.00

2. Data about the subject

2.1	Subject name				Machine Learning			
2.2	Subject area				System Engineering			
2.2	Course responsible/lecturer				S.I. dr. ing. Vlad-Cristian Miclea			
2.3	Teachers in charge of seminars				S.I. dr. ing. Vlad-Cristian Miclea			
2.4 \	2.4 Year of study 1 2.5 Semester 1			1	2.6 Assessment		E	
2.7 Subject Formative category						DA		
category Optionality				DI				

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laborator	1	3.3 Proiect	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laborator	14	3.6 Proiect	0
3.7 Individual study:	3.7 Individual study:									
(a) Manual, lecture material and notes, bibliography						1	L5			
(b) Supplementary study in the library, online and in the field							1	L4		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							2	23		
(d) Tutoring							3			
(e) Exams and tests							3			
(f) Other activities							0			

3.8 Total hours of individual study (summ (3.7(a)3.7(f)))	
3.9 Total hours per semester (3.4+3.8)	100
3.10 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Computer programming, Probability Theory

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the laboratory	Attendance at the laboratory is mandatory.

6. Specific competences

		C1. Designing intelligent systems using machine learning mechanisms;
<u>a</u>	ses	C2. Applying fundamental methods and principles for specifying solutions for
Professional	competences	learning problems in the context of automation systems
fes	ıpeί	C3. Choosing criteria and methods for the evaluation of quality and performances of machine
Pro	con	learning systems
		C4. Using domain-specific tools for explaining the operation of machine learning systems
Cross	competences	N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowledge, understanding and use of concepts related to machine learning
7.2	Specific objectives	Knowledge, understanding and use of proper formulation methodologies for machine learning systems; Knowledge, understanding and use of the specific operations of a machine learning system: data pre-processing, dimensional reduction, feature selection, building the prediction model, selection of the optimum model, performance analysis; Understanding and use of machine learning methods using statistical approaches, support vectors, simple classifiers and neural networks.

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes
0.21 220001 6 (5)1100005	of hours	methods	110103
1. Intorduction in ML	2		
2. Data, models, metrics for ML (1)	2		
3. Data, models, metrics for ML (2)	2	Exposition using	
4. Linear regression	2	oral	
5. Logistic regression and Classification	2	presentations	
6. Support Vector Machine	2	supported by	
7. Perceptron and Neural Networks	2	multimedia	
8. Loss functions and optimizations	2	tools;	
9. Convolutional neural networks (part 1) – deep	2	discussions,	
learning theory		questioning	
10. Convolutional neural networks (part 2) –	2		
backpropagation			

11. Convolutional neural networks (part 3) – object	2	
detection		
12. Convolutional neural networks (part 4) –	2	
segmentation		
13. Principal Component Analysis	2	
14. K-Means clustering	2	

Bibliography

- 1. Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu, 2022
- 2. K. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012
- 3. J. Kelleher, "Deep Learning", The MIT Press, 2019
- 4. Giuseppe Ciaburro, "MATLAB for Machine Learning", Packt Publishing Limited, 2017

	Numbe	
8.2. Laboratory	r of	Teaching methods Notes
	hours	
1. Introduction – ML in Matlab	2	Cana skudina
2. Linear regression for data prediction	2	Case studies,
3. Classification for data prediction	2	presentation of
4. Convolutional neural networks – common	2	various methods and
architectures		procedures for
5. Convolutional neural network – prediction	2	prediction,
6. Convolutional neural network – training a simple	2	training and
CNN (1)		evaluation of
7. Convolutional neural network – training a simple	2	ML models
CNN (2)		WE MODELS

Bibliography

- 1. Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu, 2022
- 2. Giuseppe Ciaburro, "MATLAB for Machine Learning", Packt Publishing Limited, 2017
- 3. Deep learning in Matlab, https://www.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html, 2022

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This course presents a practical way of combining fundamental and practical aspects used in the field of machine learning for master students with expertise in automation. The subject content is correlated with the specific curricula of other Universities, in Romania and abroad. The subject's activities are meant to make the students familiar with the applications and the research directions of the field. The themes of the laboratory correspond to some applications of many companies in Cluj-Napoca (Bosch, Siemens, Arobs etc) and abroad.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the				
, , , , , , , , , , , , , , , , , , , ,			final grade				
	Knowledge of theoretical	Oral exam, based on a course					
10.4 Course	aspects and ability to	project (CP) and theory	60%				
	solve problems	questions (T)					
	Elaboration of a CNN-	Laboratory evaluation based on					
10.5 Laboratory		the project (LP), evaluated	40%				
	based project	orally					
10.6 Minimum standard of performance							
LP>=5, CP>=5; N=0.4*LP+0.3*CP+0.3*T.							

Date of filling in: 09.06.2024		Title Surname Name	Signature
	Teachers in charge of application	S.l. dr. ing. Vlad-Cristian Miclea	
		S.I. dr. ing. Vlad-Cristian Miclea	

Date of approval in the department of Computer Science	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the faculty of Automation and Computer Science	Dean Prof.dr.ing. Mihaela
	Dinsoreanu