SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	System Engineering
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Cyber-physical systems
1.7	Form of education	Full time
1.8	Subject code	2.00

2. Data about the subject

2.1	Subject name				Evolutive systems		
2.2	Subject area						
2.2	2.2 Course responsible/lecturer Prof.dr.eng. Honoriu				Vălean <u>Honoriu.Valean@aı</u>	ut.utcluj.ro	
2.3	Teachers in charge of seminars				Lect.dr.eng. Dan Goța <u>Dan.Gota@aut.utcluj.ro</u>		
2.5		luige	As.dr.eng. Claudiu Domuța <u>Claudiu.Domuța@aut.utcl</u>				
2.4`	Year of study	1	2.5 Semester	1	2.6 Assessment		E
2.7	2.7 Subject Formative category Optionality				·		DA, DI
cate							

3. Estimated total time

IS 1 Number of hours per week 3 of which 2 1 1 1								3.3 Project		
35 36 36 3										
3.4 Total hours in the curriculum 100 lot which 1 28 1 1 1 1 1 1 1 1 1 1 1							Project			
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography							2	8		
(b) Supplementary study in the library, online and in the field							1	.0		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	.7		
(d) Tutoring										
(e) Exams and tests								3		
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

	For the course	5.1
--	----------------	-----

5.2 FOI the applications invitibility attenuance	5.2 For the applications	Mandatory attendance
--	--------------------------	----------------------

6. Specific competences

Professional	competences	2. 3. 4. 5.	cyber-physical systems Design, develop and analyze control applications using advanced systems engineering strategies and knowledge
Cross	competences	1. 2. 3.	Managing the roles, responsibilities and way of communication in a team, monitoring and controlling the activities carried out to effectively achieve the objectives

7. Discipline objectives (as results from the key competences gained)

7.1 General objective		The use of multidisciplinary knowledge in the field of systems engineering, computers and information technology in order to analyze, design, optimize, implement and test evolutionary mechanisms in the field of cyber-physical systems.
7.2	Specific objectives	 to design and implement solutions based on evolutionary algorithms to solve simple or complex optimization problems to solve problems specific to different engineering fields with the help of evolutionary algorithms

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Evolutionary algorithms, evolutionary systems	2		
Genetic algorithms	2		
Swarm intelligence	2	Interactive	
Artifficial immune system	2	presentation with examples	
Evolutionary algorithms in optimization problems	2	on the	
Multimodal optimization	2	projector. In	
Multiobjective optization	2	case of force	
Parallel and distributed evolutionary algorithms	2	majeure, online on Teams	
GA in NN and Fuzzy systems	2		
GA in planning problems	2		
GA in transport problems	2		

Genetic programming	2	
GP in control systems	4	

Bibliography

- 1. X. Yu, M. Gen. Introduction to evolutionary algorythms. Springer, e-ISBN 978-1-84996-129-5
- 2. S.V. Sivanandam, S.V. Deepa. Introduction to genetic algorythms. Springer, ISBN 978-3-540-73189-4
- 3. D.E. Goldberg. Genetic Algorythms in search, optimization and machine learning. Addison-Wesley, ISBN 0-201-15767-5
- 4. M.Gen, R. Cheng. Genetic algorythms and engineering optimization. John Wiley & Sons.
- 5. K. Miettinen , P. Neittaanmaki , M. M. Makela , J. Pkriaux . Evolutionary algorithms in engineering and computer science. John Wiley & Sons. ISBN 0-471-99902-4
- R. Poli, W.B. Langdon, N.F. McPhee, J.R. Koza. A field guide to genetic programming. https://www.researchgate.net/publication/216301261
- 7. J. Koza. Genetic programming IV. Kluwer academic publishers, ISBN: 1-4020-7446-8

	Numbe	
8.2. Seminars /Laboratory/Project	r of	Teaching methods Notes
	hours	
GA implementation in Python	2	
SI implementation in Python	2	
AIS implementation in Python	2	Practical
GA in optimization problems	2	applications on
GA in transport peoblems	2	computer
GA for controller sytnthesis	2	
Laboratory assessment	2	

Bibliography

- 1. X. Yu, M. Gen. Introduction to evolutionary algorythms. Springer, e-ISBN 978-1-84996-129-5
- 2. S.V. Sivanandam, S.V. Deepa. Introduction to genetic algorythms. Springer, ISBN 978-3-540-73189-4
- 3. D.E. Goldberg. Genetic Algorythms in search, optimization and machine learning. Addison-Wesley, ISBN 0-201-15767-5
- 4. M.Gen, R. Cheng. Genetic algorythms and engineering optimization. John Wiley & Sons.
- 5. K. Miettinen , P. Neittaanmaki , M. M. Makela , J. Pkriaux . Evolutionary algorithms in engineering and computer science. John Wiley & Sons. ISBN 0-471-99902-4
- 6. R. Poli, W.B. Langdon, N.F. McPhee, J.R. Koza. A field guide to genetic programming. https://www.researchgate.net/publication/216301261
- 7. J. Koza. Genetic programming IV. Kluwer academic publishers, ISBN: 1-4020-7446-8

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Assessment of knowledge using a test	Presentation of a physical or online project on Teams in case	50%

	based on the knowledge acquired following participation in the course	of force majeure			
10.5 Seminars /Laboratory/Project	Assessment of the practical skills and knowledge acquired during thw laboratory.	Practical or online Teams assessment (in case of force majeure).	50%		
10.6 Minimum standard of performance					
Exam grade >= 5 and lab assessment grade >= 5					

Date of filling in: 6.06.2024		Title Surname Name	Signature
	Lecturer	Prof.dr.eng. Honoriu Vălean	
	Teachers in charge of application	Lect.dr.ing. Dan Goța	
		As.dr.ing. Claudiu Domuța	

Date of approval in the department

Head of department Prof.dr.ing. Honoriu VĂLEAN

Date of approval in the faculty

Dean Prof.dr.ing. Mihaela DÎNŞOREANU