SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	17.00

2. Data about the subject

2.1 Subject name			Measu	Measurements and Actuators				
2.2 Course responsible /lecturer		Assoc.	Assoc. Professor Rodica Holonec, Phd eng –					
	cture	1	rodica	rodica.holonec@ethm.utcluj.ro				
2.3 Teachers in charge of	semi	minars/ Pł		Phd. Student Rapolti Laszlo				
laboratory/ project			Laszlo.Rapolti@ethm.utcluj.ro					
2.4 Year of study	II	2.5 Sem	ester 1 2.6 Type of assessment (E – exam, C – colloquium, V – verification)			E		
DF – fundam		fundame	ental, DD – in the field, DS – specialty, DC – complementary			DD		
2.7 Subject category	DI —)I – compulsory, DO – elective, Dfac – optional						

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	56	ofwhich	Course	20	Sominars		Laboratory	20	Project	
semester	50	or writeri.	Course	20	Seminars		Laboratory	20	FIOJECI	
3.3 Individual study:										
(a) Manual, lecture materia	l and r	notes, bibl	iography							16
(b) Supplementary study in	the lib	orary, onlir	ne and in	the f	ield					6
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						10				
(d) Tutoring							10			
(e) Exams and tests						2				
(f) Other activities:						-				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 44										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Mathematics, Physics, Theory of electric circuits;	
4.2 Competence	Basic Knowledge in Mathematics, Physics, Electrical and Electronic	
	Engineering	

5. Requirements (where appropriate)

5.1. For the course	Multimedia means. Online: collaborative platforms (Teams, etc.).				
	Onsite: blackboard, projector, computer				
	Course attendance by students is not mandatory, but is recorded by the				
	teaching staff in charge of the course, for the correct assessment of the				
	relevance of its evaluation by students at the end of the course				
5.2. For the applications	Laboratory classroom equipped with specific measuring devices and sensors.				
	Attendance at the laboratory is mandatory				

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (2 credits)		
	C1.1 – Recognizing and describing concepts that are specific to the fields of		
	calculability, complexity, programming paradigms, and modeling computational and communication systems		
	C1.2 – Using specific theories and tools (algorithms, schemes, models,		
	protocols, etc.) for explaining the structure and the functioning of hardware,		
	software and communication systems		
	C1.3 – Building models for various components of computing systems		
	C1.4 – Formal evaluation of the functional and non-functional characteristics		
	of computing systems		
	C1.5 – Providing a theoretical background for the characteristics of the		
	designed systems		
	C2 – Designing hardware, software, and communication components (2		
	credits)		
	C2.1 – Describing the structure and functioning of computational,		
	communication and software components and systems		
	C2.2 – Explaining the role, interaction and operation of hardware, software and communication components.		
	C2.3 – Construction of hardware and software components of computing		
	systems using design methods, languages, algorithms, data structures,		
	protocols and technologies.		
	C2.4 – Evaluating the functional and non-functional characteristics of the		
	computing systems using specific metrics		
	C2.5 – Implementation of hardware, software, and communication		
	components		
6.2 Cross competences	1. Identification of the objectives to be achieved, the available resources, the		
	conditions for their completion, work stages, working times, deadlines, and		
	related risks.		
	2. Responsible execution of professional duties		

7. Discipline objective (as results from the key competences gained)

7.1 General objective	The purpose of the course is to make the student's first engineering contact with the technique of electrical and electronic measurements, knowledge of the field of non-electrical measurements, the main quantities and measuring methods, as well as the integration of sensors in modern technological systems
7.2 Specific objectives	After completing the course, students will be able to:
	• To know how to identify measuring devices and to read the indication of a
	measuring device
	• To know how to use measuring devices according to the measured quantity
	• To know how to read a measurement scheme
	• To know how to interpret the result of a measurement and the related
	error
	• To be able to estimate the quality and precision of the measurement
	process
	• To choose sensors for a certain practical situation
	• To implement a system for measuring a non-electric quantity
	• To evaluate the accuracy of measurements
	• To optimize measurement systems

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
1.Electronic Measurements. General and Introductory Elements. Methods and Means of Measurement. Examples.	2		

2. The Structure of measuring Devices. Metrological	2		
Characteristics of Sensors and Measuring devices.	2	_	
3. Physical Quantities, Measurement Units and Standards.	2		The teaching
Measurement Errors and Uncertainties. Calculation Examples.	2	Onsita ar anlina	process uses
4. Analog Electronic Measuring Devices. Measuring Signal		teaching (according to	multimedia
Conditioning Circuits. Examples. Measurement Bridges.	2	the regulations)	presentations
Applications.		nrocontations,	(powerpoint),
5. Digital Measuring Devices. Examples. Applications. Measuring	2	interactive means	onsite or
Devices with Microprocessor.	Z	interactive means	online
6. Analog to Digital Converters. Digital to Analog Converters.	n		interaction
Digital Voltmeters. Virtual Instruments.	Z		(according to
7. The Analog and Digital Oscilloscope	2		the
8. DC Microvoltmeters with Modulation/Demodulation. Wave	n		regulations)
Analyzers.	Z		with students
9. Measurement Systems using Measurement Information			on the issues
Conversion.	2		addressed,
10. Transducers and Sensors. Principles. Operation. Applications.	2		distributed to
11. Sensors for Measuring Electrical Quantities, Examples,	_	-	students,
Applications.	2		consultation
13. Sensors for Electrical Measurement of Non-electric			hours, case
Quantities. Examples. Applications.	2		studies.
12. Analog and Digital Sensors. Potentiometers. Variable-			
Inductance and Capacitance Sensors. Temperature sensors.	2		
Encoders.			
14. Fiber Optic and Laser Sensors. Sensors for Special Applications	2		
(biophysics, biomedicine).	2		
Bibliography			
1. Rodica Holonec, Electrical Measurements and Instrumentation,	, Editura I	Mediamira, Cluj-Napoca,	2003, 259 p,
ISBN 973-9357-42-3			

- 2. Dragomir, N.D., TÂRNOVAN, I.G., Crişan, T.E. Electrical Measurement of Non-Electric Quantities. Vol. I. Editura MEDIAMIRA, Cluj-Napoca, România, 2002. ISBN 973-9358-75-6.
- Tarnovan, I. G. Metrologie electrică şi instrumentație. Editura MEDIAMIRA, Cluj-Napoca, România, 2003. ISBN 973-9357-39-3.
- 4. Munteanu, R., Târnovan, I.G., Dragomir, N.D., Popovici, O. Electrotehnică și convertoare energetice, Ed.Mediamira, Cluj-Napoca, 1997.
- 5. Dragomir,N.D., col. Măsuri și traductoare. Curs. Vol.1. Măsurarea mărimilor electrice; vol.2 : Traductoare și măsurarea electrică a mărimilor neelectrice. Lito IPC, Cluj-Napoca, 1989.
- Dragomir,N.D., col. Măsurarea electrică a mărimilor neelectrice. Vol.1 4 : Măsurarea mărimilor geometrice. Măsurarea mărimilor termice şi fotometrice, Măsurarea mărimilor mecanice Ed.Mediamira, Cluj-Napoca, 1999 – 2004.
- 7. Todoran, Gh., Copîndean, R; Masurari Electrice si Electronice. Editura Mediamira; Cluj Napoca. 2003. 282p. ISBN 973-9357-61-X.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
1. Analog Measurement Devices	2	The teaching process	
2. Digital Measurement Devices	2		
3. Domain Extension of Analog Measurement Instruments	2	uses multimedia	
4. Single-phased A.C. Circuits Measurements	2	presentations	
5. The Wheatstone Bridge	2	(PowerPoint), onsite	
6. Temperature Measurement	2	or online interaction	Experimental
7. Flow and Level Measurement	2	(according to the	circuits,
8. Angular Speed Measurement	2	regulations) with	Computer
9. Displacement Measurement	2	students on the	
10. Virtual Instrumentation1: Introduction in LabView	2	students on the	

11. Virtual Instrumentation 2. Using LabVIEW and NI ELVIS for	2	issues addressed,	LabView
studying different transducers (sensors and actuators)		materials distributed	software, NI
12. Virtual instrumentation 3. Data acquisition	2	to students	hardware
13. Virtual instrumentation 4. LabVIEW Signal Processing	2	concultation hours	hardware
Applications	2	consultation nours,	
14. Submission of reports/evaluation	2	case studies.	

Bibliography

- 1. Munteanu,R., Dragomir,N.D., TÂRNOVAN,I.G., Holonec,Rodica, Bortoş,P. Tehnici de măsurare. Îndrumător de laborator. Atelierul de multiplicare al U.T.C.-N., 1995.
- 2. Rodica Holonec, B. Tebrean, I.G. Tarnovan, Gh. Todoran, Electronic Measurements: Laboratory Manual Editura U.T. PRESS, Cluj-Napoca 2010, ISBN.978-973-662-600
- 3. Dan Iudean, Radu Munteanu jr., Mircea Buzdugan, Eudor Flueraș, Alex Crețu "Măsurări electrice și electronice –Îndrumător de laborator"- 2016, Editura Mediamira
- 4. Rodica Holonec, Radu Adrian Munteanu, Romul Copîndean, Florin Drăgan, Instrumentație virtuală: lucrări de laborator, UT Press, 2018 Cluj-Napoca
- 5. I. Târnovan, Metrologie și instrumentație electrică, Ed. Mediamira, 2003.
- 6. R Munteanu jr., col. Traductoare pentru sisteme de măsurare, Ed. Mediamira, 2003.
- 7. N. Patachi, Nicolae D. Dragomir, Radu Munteanu, Gh. Todoran, Ioan Tarnovan "Masurări și traductoare, îndrumător de laborator"-, 1986
- 8. Bird, J. "Electrical Circuit Theory and Technology", Elsevier, Oxford, 2004

9. Webster, J., Eren, H. – "Measurement, Instrumentation and Sensors Handbook" CRC Press 2014

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the discipline is consistent with the one from other universities in the country and abroad. For a better adaptation to the requirements of the labour market, the content of the discipline has been updated in accordance with the opinions of some representatives of the business environment in the field.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Final exam (E)-Theoretical questions and exercises (3 hours)	Online examination	100%		
Seminar					
Laboratory	Activity and attendance during classes laboratory.	Evaluation of reports from laboratory works	0%		
Project					
Minimum performance standard: Completion of the laboratory is mandatory for entering the exam. • Passing condition: Exam grade > 5					

Date of filling in:TitulariTitlu Prenume NUMESemnătura10.06.2024CourseAssoc.Prof. Rodica Holonec, PhD engApplicationsApplicationsPhd. Student Rapolti Laszlo

Date of approval in the department

Date of approval in the Faculty Council

Head of department Prof.dr.ing. Honoriu Valean

Dean Prof.dr.ing. Mihaela Dinsoreanu