SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Research Masters
1.6	Program of study/Qualification	CYBER PHYSICAL SYSTEMS
1.7	Form of education	Full time
1.8	Subject code	16.10

2. Data about the subject

2.1	Subject name				Emerging Control Syst	tems for Industry 5.0	
2.2	Subject area						
2.2	Course recognished the stures				Prof.Dr.Ing. Cristina I. Muresan –		
2.2	Course respon	Course responsible/lecturer			cristina.muresan@aut.utcluj.ro		
2.3	Teachers in ch	narge	of seminars		Sl. Dr. Ing. Isabela B	irs – isabela.birs@aut.uctluj.rc)
2.4	2.4 Year of study 2 2.5 Semester 2			2	2.6 Assessment	Е	
2.7	7 Subject Formative category				•	•	DA
cate	category Optionality						DO

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2	2	3.3		3.3	1	3.3	
			Course		Seminar		Laborator		Proiect	
3.4 Total hours in the curriculum	42	of which	3.5	28	3.6		3.6	14	3.6	
3.4 Total flours in the curriculum	42		Course	20	Seminar		Laborator	14	Proiect	
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								23		
(b) Supplementary study in the library, online and in the field									10	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays									10	
(d) Tutoring								2		
(e) Exams and tests								3		
(f) Other activities										
3 9 Total hours of individual study (summ (2.7/a) 3.7/f))) 59										

3.8 Total hours of individual study (summ (3.7(a)3.7(f)))	58
3.9 Total hours per semester (3.4+3.8)	100
3.10 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	System Theory I+II, Control Engineering I+II
4.2	Competence	Fundamental knowledge of automation

5. Requirements (where appropriate)

5.1	For the course	Bibliography reading for lectures
5.2	For the applications	Laboratory classes are compulsory

6. Specific competences

		C4. Analysis, synthesis and implementation of advanced control startegies with practical
	Se	applications
_		C4.1 Performance criteria for advanced process control methods
ons	ü	C4.2 Use of interdisciplinary and multidisciplinary knowledge and information to
issi	ete	integrate advanced process control methods in an industrial setting
Professiona	competences	C4.3 Creative use of principles and advanced methods to ensure safety, security and
Pr	8	employment of advanced process control methods
		C4.5 Development of professional or/and interdisciplinary research projects, while
		meeting quality, security and safety standards
	S	Team work
	nce	Scientific communication of results
Cross	ete	
ပ်	competences	
	cor	
	_	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	•	Introduction into basic concepts related to fractional order control, autotuning methods and event-based implementations
7.2	Specific objectives	•	Industry 5.0 concepts and modernization of control systems Emerging control methods Analysis and synthesis of fractional order control strategies Analysis and synthesis of auto-tuning methods Event-based implementation possibilities and advantages

8. Contents

8.1. Lecture (syllabus)		Teaching	Notes
		methods	Notes
Introduction: from Industry 1.0 towards Industry 5.0. Industry 4.0 and cyber physical systems. Industry 5.0 and			
cyber physical cognitive systems (CPGS). Modern control	4	PPT	In case of
systems. Emerging control methods suitable for Industry 5.0. Basics		presentations,	major force
of auto-tuning methods	4	open discussions,	classes will be held
Fractional order control systems: introduction, advantages, tuning, implementation	4	demonstration,	online using
Fractional order control systems and auto-tuning methods.		case studies	Teams
A time domain approach. Implementation and validation on	4		
CPGS			

Fractional order control systems and auto-tuning methods.		
A frequency domain approach. Implementation and	4	
validation on CPGS		
Fractional order event-based control systems. Increasing		
the efficiency of control systems by reducing energy use	1	
according to the sustainability standards sought by Industry	4	
5.0.		
Industrialization of fractional order control systems. Case	4	
studies	4	

Bibliography

- 1. Monje, C.A.; Chen, Y.Q.; Vinagre, B.; Xue, D.; Feliu, V. Fractional Order Systems and Controls: Fundamentals and Applications; Springer: Berlin, Germany, 2010
- 2. C. Copot, C.M. Ionescu, C.I. Muresan (2020), Image-Based and Fractional-Order Control for Mechatronic Systems. Theory and Applications with MATLAB®, ISBN 978-3-03-042005-5, 978-3-03-042006-2, DOI: 10.1007/978-3-030-42006-2, Springer
- 3. Cristina I. Muresan, Robin De Keyser, Revisiting Ziegler–Nichols. A fractional order approach, ISA Transactions, 2022,DOI: 10.1016/j.isatra.2022.01.017
- 4. I. Birs, I. Nascu, C. Ionescu, C. Muresan (2020), "Event-based fractional order PID control",
 Journal of Advanced Research, Volume 25, pp.191-203, DOI: 10.1016/j.jare.2020.06.024 BURNS
 Roland S., Advanced control engineering, 2004, Oxford
- 5. Vilanova, Ramón and Antonio Visioli. "PID control in the Third Millennium: lessons learned and new approaches." (2012).

8.2. Seminars /Laboratory/Project	Numbe r of	Teaching methods	Notes
	hours		
Introduction into Industry 5.0 and analysis of modern	2		
control systems	_		
Implementation of standard auto-tuning methods. Case	2		
study: vertical take-off and landing	2		
Analysis and implementation of fractional order			
control systems using various software tools	2	Practical use of	l.,
(FOMCOM, NINTEGER, AFOPI, FLOreS). Matlab	\ \(^{\alpha}	dedicated	In case of
simulation. Case study: anesthesia control		equipment,	major force classes will
Practical implementation and validation of fractional		case studies,	be held
order control systems. Case study: vertical take-off	2	demonstration,	online using
and landing.		brainstorming	Teams
Practical implementation and validation of fractional			Teams
order control systems and auto-tuning methods. Case	2		
study: DC motor control.			
Practical implementation and validation of fractional			
order control systems and auto-tuning methods. Case	2		
study: vertical take-off and landing platform.			

Event-based implementation of fractional order		
controllers. Case study: vertical take-off and landing	2	
platform.		

Bibliography

- 1. Tepljakov, Aleksei, et al. "FOMCON Toolbox for Modeling, Design and Implementation of Fractional-Order Control Systems." Applications in Control, De Gruyter, 2019, pp. 211–36, doi:10.1515/9783110571745-010.
- 2. Lennart van Duist, Gijs van der Gugten, Daan Toten, Niranjan Saikumar, Hassan HosseinNia, FLOreS Fractional order loop shaping MATLAB toolbox, IFAC-PapersOnLine, Volume 51, Issue 4, 2018, Pages 545-550, DOI: 10.1016/j.ifacol.2018.06.152.
- 3. QNET 2.0 VTOL Board for NI ELVIS, Student workbook, Quanser, Ontario, Canada, 2011
- 4. https://www.mathworks.com

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the lectures and laboratory classes corresponds to some of the newest approaches in control engineering. Selected case studies refer to emerging applications, ranging from aerodynamics to biomedical engineering. The content of the lectures and the laboratory classes has been discussed with companies in Romania.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Evaluation of the acquired skills, activity within lectures	Written exam	50%
10.5 Seminars /Laboratory/Project	Evaluation of the practical skills, attendance, activity within laboratory classes	Oral exam	50%
10.6 Minimum standa	ard of performance Exam gra	ade >5, Laboratory grade>5	

Date of filling in: 4.06.2024		Title Surname Name	Signature
	Lecturer	Prof. dr.ing. Cristina I. Muresan	
	Teachers in charge of application	SL.dr.ing. Isabela R. Birs	

Head of department Prof.dr.ing. Honoriu Valean	
Dean	
Prof.dr.ing. Mihaela Dinsoreanu	