SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	System Engineering
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	CYBER PHYSICAL SYSTEMS
1.7	Form of education	Full time
1.8	Subject code	13.00

2. Data about the subject

2.1	Subject name				Dependability of Cyber-Physical Systems		
2.2	Subject area				System Engineering		
2.2	Course responsible/lecturer				Prof.dr.eng. Liviu Miclea, Liviu.Miclea@aut.utcluj.ro		
2.3	Teachers in charge of seminars				S.I.dr. Cosmina Corcheş, Cosmina.Corches@aut.utcluj.ro		
2.4 Year of study 2 2.5 Semester 1		2.6 Assessment		E			
2.7 Subject Formative category				DA			
category Optionality					DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Proje	ct C)
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Proje	ct C)
3.7 Individual study:											
(a) Manual, lecture materia	al and	notes, bib	liograph	iy						15	
(b) Supplementary study in the library, online and in the field							14				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							23				
(d) Tutoring							3				
(e) Exams and tests										3	
(f) Other activities							0				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
		Mathematics (algebra, logic, graph theory) and statistics.
4.2	Competence	Knowledge of reliability.
		Knowledge of programming engineering.

5. Requirements (where appropriate)

5.1	For the course	
	For the applications	
5.2	(seminar / laboratory /	Attendance at the laboratory is mandatory.
	project)	

6. Specific competences

		C4. Contextual integration and integrity of complex control systems and industrial networks.
sional tences	ces	C5. The creative combination of multidisciplinary knowledge in the field of systems engineering,
	sten	computers and information technology in order to research, design, optimize, implement and
ofes		test original theories, algorithms and methods specific to complex control systems and industrial
Pr	ō	networks.
	es	N/A
s	nco	
Cross mpete	ete	
	dm	
	00	
Cross	competence	

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	The main techniques for assessing the dependability of cyber- physical systems. Basic models used in assessing the dependability of cyber- physical systems. Activities, management, automation of dependability assessment and related aspects, team organization, assessment process, role and responsibilities of employees, process automation tools.
7.2	Specific objectives	Knowledge of some methodologies for calculating the dependability of cyber-physical systems. Acquiring effective methods of developing procedures for assessing the dependability of cyber-physical systems. The use of environments for the creation and development of tests. The ability to coordinate the operational and efficient assessment process of the dependability of cyber-physical systems.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Dependable systems and incidents	4	Didactic	
2. Dependability - Basic Concepts and Taxonomy	4	exposition,	

3.	Fault-Tolerance and Modelling	4	didactic	
4.	Certification – Processes and Standards	4	conversation,	
5.	Failure Modes and Models	4	questioning	
6.	Hardware aspects of dependable CPS	4	-	
7.	Software aspects of dependable CPS	4	_	
	Bibliography			
1.	Pedro H. J. Nardelli, "Cyber-physical Systems : Theor	y, Methodo	ology, and Applicat	ions", ISBN
	1119785162, ISBN-13 9781119785163, Wiley, 2022			
2.	Harris Maria, Handbook of Dependability Engineerin	g, ISBN 978	31639872770, Ed. M	Aurphy &
	Moore Pub, 2022			
3.	W. Goble, "Control Systems Safety Evaluation and R	eliability, 3r	d Edition", ISBN 97	78-1-934394-
	80-9, ISA, 2010			
4.	Edward A. Lee, "Cyber Physical Systems: Design Cha	llenges", 11	th IEEE Symposiun	n on Object
	Oriented Real-Time Distributed Computing (ISORC),	ISBN 978-0	-7695-3132-8/08, I	DOI
	10.1109/ISORC.2008.25, 2008			
5.	Jing Lin, Sahra Sedigh, and Ann Miller, "Towards Inte	egrated Sim	ulation of Cyber-Pl	hysical
	Systems: A Case Study on Intelligent Water Distribut	ion", 2009	Eighth IEEE Interna	ational
	Conference on Dependable, Autonomic and Secure	Computing,	ISBN 978-0-7695-	3929-4/09,
	DOI 10.1109/DASC.2009.140			
6.	Peng Zhou, Decheng Zuo, Kun Mean Hou, Zhan Zhar	ng, Jian Don	g, Jianjin Li	
	and Haiying Zhou, "A Comprehensive Technological	Survey on	the Dependable Se	elf-
	Management CPS: From Self-Adaptive Architecture	to Self-Man	agement Strategie	s", Sensors
	2019, 19, 1033; doi:10.3390/s19051033			
7.	Algirdas Avizienis, Jean-Claude Laprie, Brian Randell	, and Carl La	andwehr, "Basic Co	oncepts and
	Taxonomy of Dependable and Secure Computing", I	EEE Transac	ctions on Dependal	ble and
	Secure Computing, Vol. 1, No. 1, January-March 200	4, ISSN 154	5-5971/04	
8.	Jin Jiang, "Fault-tolerant Control Systems", ACTA AC	JIOMATICA	SINICA, VOI. 31, N	o. 1, January
	2005			1
8.2. Lal	boratory	Number	Teaching	Notes
1	Designeents and towning to an	or nours		
1.	Basic concepts and terminology	2	Case studies,	
2.	Reliability Block Diagram (RBD)	2	evaluating the	
3.	iviodeling and Evaluation Stochastic Petri Nets	2	dependability	
	(SPN) Modeling and Evaluation		of Cyber-	
4.	Continuous-Time Markov Chains (CTMC) Modeling	2	Physical	
	and Evaluation		Systems, and	
5.	Discrete-Time Markov Chains (DTMC) Modeling	2	discussions	
	and Evaluation			
6.	Fault Trees (FT) Modeling and Evaluation	2		

- 7. Complex applications
 - Bibliography

1. Mercury Tool Manual, v4.8, 2020, MoDCS Research Group, http://www.modcs.org

2

2. H. Pham, "System reliability concepts," in System Software Reliability., Springer, 2006

 R. Matos Junior, A. Guimaraes, K. Camboim, P. Maciel, and K. Trivedi, "Sensitivity analysis of availability of redundancy in computer networks," in CTRQ 2011, The Fourth International Conference on Communication Theory, Reliability, and Quality of Service. IARIA, Apr 2011, pp. 115–121. [Online].

Available:

http://www.thinkmind.org/index.php?view=article&articleid=ctrq_2011_6_10_10047

- G. Callou, P. Maciel, D. Tutsch, and J. Araujo, "Models for dependability and sustainability analysis of data center cooling architectures," in Dependable Systems and Networks (DSN), 2012 IEEE International Conference on, Jun 2012, pp. 1–6.
- A. V. Ratzer, L.Wells, H.M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing, M.Westergaard, S. Christensen, and K. Jensen, "Cpn tools for editing, simulating, and analysing coloured petri nets," in Applications and Theory of Petri Nets 2003. Springer, 2003, pp. 450–462.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The laboratory topics are inspired by the applications of some companies from Cluj-Napoca, such as Bosch, Siemens, Arobs, Emerson, etc.

The themes of the project correspond to some applications of our companies in the country.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Knowledge of theoretical and practical aspects and ability to solve problems	Exam based on lecture and laboratory questions (CL)	100% (10% of office)
10.6 Minimum standa N=1+0.9*CL.	ard of performance CL>=5;		

Date of filling in:		Title Surname Name	Signature
03.06.2024	Lecturer	Prof.dr.ing. Liviu Miclea	
	Teachers in charge of	S.I.dr. Cosmina Corcheş	
	application		

Date of approval in the Department of Automation

Head of department Prof.dr.ing. Honoriu Vălean

Date of approval in the Faculty of Automation and Computer Science

Dean Prof.dr.ing. Mihaela Dinsoreanu