SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation Department
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Research Master's
1.6	Program of study/Qualification	Cyber Physical Systems
1.7	Form of education	Full time
1.8	Subject code	10.00

2. Data about the subject

2.1	Subject name				Cyber-Physical Systems' Security		
2.2	Course responsible/lecturer				Assoc. prof. Stan Ovidiu – Ovidiu.Stan@aut.utcluj.ro		
2.3	Teachers in charge of seminars				Assoc. prof. Stan Ovidiu – Ovidiu.Stan@aut.utcluj.ro		
2.4	2.4 Year of study 1 2.5 Semester 2		2	2.6 Assessment	E		
2.7 9	2.7 Subject Formative category				DA		
category Optionality				DI			

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	al and	notes, bib	liograph	ıy					2	0
(b) Supplementary study in the library, online and in the field						2	0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	3			
(d) Tutoring							2			
(e) Exams and tests						:	3			
(f) Other activities						()			
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	 Mathematical Algebra, Special Mathematics, Probability Programming in a high-level object language
4.2	Competence	Computer usage basics.

5. Requirements (where appropriate)

5.1	For the course	 Classroom with, video projector, blackboard, Internet connection
5.2	For the applications	Laboratory attendance is mandatory.

6. Specific competences

Professional competences	C3 Innovative design of complex control systems, industrial networks and related hardware and software components, using domain-specific tools. C3.1 Identification and description of advanced techniques, methods, methodologies and technologies for the analysis, design and implementation of computer applications based on programmable equipment and embedded systems. C3.2 The use of concepts, principles, techniques, methodologies and advanced technologies of analysis, design and implementation splications based on programmable equipment and embedded systems.
Cross competences	CT1 Demonstrating knowledge of the economic, ethical, legal and social context of exercising the profession for identifying tasks, planning activities and opting for responsible decisions, culminating in the conception, drafting and presentation of a scientific paper. CT2 Clear and concise description of the activity flow, tasks and results in the domain, obtained either by assuming the role of leader / project head or as a member of a research team, thanks to: the ability to synthesize information in the field, global overall vision, communication skills with collaborators, the ability to define activities by stages.

7. Discipline objectives (as results from the key competences gained)

		- Identify and master the main modern techniques in security in
		the current technological context of the CPS and Internet of
		Things
		- This course aims to introduce students to the concept of CPS &
		IoT and its impact on our daily lives, make them understand the
		architecture and components of CPS & IoT and address the
		challenges and solutions of implementing.
7.1	General objective	- Students will learn how to link and exchange communication
		costs and computing power, as well as hardware and software. In
		addition, digital security is a critical design issue for CPS systems.
		From this course, students will become aware of the issues of
		cyber-security issues raised by IoT and will gain knowledge about
		related security techniques. Students will also gain hands-on
		experiences about building IoT devices and implementing
		security techniques through team projects.
		- Use of specific algorithms/methods to secure data through
		encryption
		- Identification of vulnerabilities
7.2	Specific objectives	- Security assessment of smart devices
		- Understanding the impact of CPS & IoT technologies
		- Knowledge of emerging CPS & IoT technologies
		- Developing critical thinking skills

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
01. Course Logistics. Security Basics	2		
02. IoT and CPS System Architecture: Their Differences, Understanding Their Threat Models	2		
03. Program Analysis for IoT/CPS (Dynamic, Static Analysis, Symbolic Execution)	2		
04. Building Blocks of Binary Analysis (Program Slicing, Taint Tracking, Summarization, Binary Rewriting, Symbolic Execution), Binary Hardening, Information Leaks, and Side-channels.	2		
05. Side Channel Attacks; Definition, Attack Types, Threat Model	2	Presentation and reading from course notes and	
06. Formal Analysis and Verification (Model Checking and Falsification with LTL/MTL)	2		
07. Defense Strategies, Static and Dynamic Enforcers	2	references,	
 08. Machine Learning for Perception and Decision Making (Autonomous Vehicle Controller Pipeline, Sensor Fusion, Kalman Filter) 	2	questions and answers face-to- face and online,	
09. Models of Autonomous Systems, Data-driven Verification, Verification of Models with Black-box Components	2	case studies.	
10. Voice-assistant Systems, Their Architectures, Integrated Algorithms (Voice Recognition, Intent Extraction, Conflict Resolution)	2		
11. Security Protocols and Their Verification, part 1	2		
12. Security Protocols and Their Verification, part 2	2]	
13. Trusted and Confidential Computing (TCC), part 1	2]	
14. Trusted and Confidential Computing (TCC), part 2	2]	
Bibliography	·		

1. Ross Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems 3rd Edition, ISBN 978-1119642787, Chapters 1, 2, 3

- 2. Trent Jaeger, Operating System Security, ISBN: 978-3-031-02333-0, Chapter 1
- Greer, C., Burns, M., Wollman, D. and Griffor, E. (2019), Cyber-Physical Systems and Internet of Things, Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online], <u>https://doi.org/10.6028/NIST.SP.1900-202</u>
- 4. Anders Møller, Michael I. SchwartzbachStatic Program Analysis, https://cs.au.dk/~amoeller/spa/spa.pdf Chapter 1
- 5. Compilers, Principles, Techniques and Tools (Dragon Book), Chapter 10
- 6. Celik et al., Program Analysis of Commodity IoT Applications for Security and Privacy: Challenges and Opportunities, https://arxiv.org/pdf/1809.06962.pdf
- 7. What is soundness (in static analysis) https://tinyurl.com/749mt8n8

8. Shoshitaishvili et al., (State of) The Art of War: Offensive Techniques in Binary Analysis,							
https://sites.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf							
. Mathias Payer, Software Security Principles, Policies, and Protection (Book), Chapter 4 (Memory							
and Type Safety), <u>https://nebelwelt.net/SS3P/softsec.pdf</u>							
10. Manes et al., The Art, Science, and Engineering of Fuzzin	10. Manes et al., The Art, Science, and Engineering of Fuzzing: A Survey (Paper),						
https://arxiv.org/pdf/1812.00140.pdf							
 Klees et al., Evaluating Fuzz Testing (Paper), <u>https://cseweb.ucsd.edu/~dstefan/cse227-</u> 							
spring20/papers/klees:evaluating.pdf							
2. Kapinski et al., Simulation-Based Approaches for Verification of Embedded Control Systems,							
https://viterbi-web.usc.edu/~jdeshmuk/teaching/cs699-	-fm-for-cps	/Papers/B1.pdf					
13. Michael Huth, Mark Ryan, Logic in Computer Science, M	odelling ar	nd Reasoning about	Systems,				
Chapter 3 (Verification by Model Checking), <u>http://staff.</u>	<u>ustc.edu.c</u>	n/~huangwc/book/l	LogicInCS.pdf				
14. Yurtsever et al., A Survey of Autonomous Driving: Comm	on Practic	es and Emerging Te	chnologies				
(Paper), <u>https://arxiv.org/pdf/1906.05113.pdf</u>							
15. Spreitzer et al. Systematic Classification of Side-Channel	Attacks: A	Case Study for Mot	oile Devices,				
https://arxiv.org/pdf/1611.03748.pdf							
16. Lentzsch et al., Hey Alexa, is this Skill Safe?: Taking a Clo	ser Look at	the Alexa Skill Ecos	ystem,				
https://anupamdas.org/paper/NDSS2021.pdf							
17. Blanchet et al., Modeling and Verifying Security Protoco	ls with the	Applied Pi Calculus	and ProVerif,				
https://bblanche.gitlabpages.inria.fr/publications/Blanc	hetFnTPS1	<u>6.pdf</u>					
18. Cremers et al., A Comprehensive Symbolic Analysis of TL	S 1.3,						
https://acmccs.github.io/papers/p1773-cremersA.pdf							
19. Cerdeira et al., SoK: Understanding the Prevailing Securi			-assisted TEE				
Systems, <u>https://www.cs.purdue.edu/homes/pfonseca/</u>							
20. Stan, O.P.; Enyedi, S.; Corches, C.; Flonta, S.; Stefan, I.; G			ncrease				
Dependability in a Cloud-Fog-Edge Environment. Sensor	s 2021, 21,	4714.					
https://doi.org/10.3390/s21144714	1						
	Numbe						
8.2. Seminars /Laboratory/Project	r of	Teaching methods	Notes				
	hours						
01. Crypto and Crypto Protocols							
Hashes and Message Authentication	2						
Asymmetric & Symmetric Cryptography		Documentation					
Key Management		reading,					
02. Crypto and Crypto Protocols		presentation					
User Authentication	2	and					
Authentication Protocols		exemplification,					
03. Network Security		individual					
 Networking Background and TCP Attacks 		exercises on the					
Transport Layer Security		computer,					
Routing Security	2	problem solving					
DNS Security		within a team.					
Firewalls and Tunnels							
Intrusion Detection Systems							

04.	Topic: Systems Security			
	Software Vulnerabilities	2		
	Access Control	2		
	Operating System Security			
05.	Topic: Systems Security			
	Web Security	2		
	Mobile Security	2		
	IoT Security			
06.	Machine Learning for Security Applications		-	
	• Attacks on the Machine Learning Pipeline:			
	Poisoning attacks, model theft attacks, adversarial			
	examples, recovery of sensitive training data, and			
	physical-world attacks			
	• Threat Models: White Box, Black Box, and Grey			
	Box	2		
	Transferability			
	• Types of Defenses: Pre-processing, and robust			
	optimization			
	 Introduction to Privacy in Machine Learning: 			
	Membership inference and model inversion			
	attacks			
07.	Security of Machine Learning Systems	2		
	liography			
	Ross Anderson, Security Engineering: A Guide to Building	, Dependa	ble Distributed Syst	ems 3rd
	Edition, ISBN 978-1119642787, Chapters 1, 2, 3	,		
2.	Trent Jaeger, Operating System Security, ISBN: 978-3-03	1-02333-0	Chapter 1	
	Greer, C. , Burns, M. , Wollman, D. and Griffor, E. (2019),			nternet of
	Things, Special Publication (NIST SP), National Institute o	•	· ·	
	MD, [online], https://doi.org/10.6028/NIST.SP.1900-202			
4.	Anders Møller, Michael I. SchwartzbachStatic Program A			
	https://cs.au.dk/~amoeller/spa/spa.pdf Chapter 1			
5.	Compilers, Principles, Techniques and Tools (Dragon Boc	k) Chante	or 10	
6.	Celik et al., Program Analysis of Commodity IoT Applicati			^hallenges
0.	and Opportunities, https://arxiv.org/pdf/1809.06962.pd			chancinges
7.	What is soundness (in static analysis) https://tinyurl.com		8	
7. 8.	Shoshitaishvili et al., (State of) The Art of War: Offensive			
0.	https://sites.cs.ucsb.edu/~vigna/publications/2016_SP_a			',
9.	Mathias Payer, Software Security Principles, Policies, and	• ·		Memory
9.	and Type Safety), <u>https://nebelwelt.net/SS3P/softsec.pd</u>		n (book), chapter 4	livieniory
10	Manes et al., The Art, Science, and Engineering of Fuzzin		(Paper)	
10.	https://arxiv.org/pdf/1812.00140.pdf	s. A Survey	y (raper),	
11		where a	du/~dstofan/cso22	7_
11.	Klees et al., Evaluating Fuzz Testing (Paper), <u>https://csew</u>	eb.ucsu.e		<u>/-</u>
	spring20/papers/klees:evaluating.pdf			

- 12. Kapinski et al., Simulation-Based Approaches for Verification of Embedded Control Systems, https://viterbi-web.usc.edu/~jdeshmuk/teaching/cs699-fm-for-cps/Papers/B1.pdf
- 13. Michael Huth, Mark Ryan, Logic in Computer Science, Modelling and Reasoning about Systems, Chapter 3 (Verification by Model Checking), <u>http://staff.ustc.edu.cn/~huangwc/book/LogicInCS.pdf</u>
- 14. Yurtsever et al., A Survey of Autonomous Driving: Common Practices and Emerging Technologies (Paper), <u>https://arxiv.org/pdf/1906.05113.pdf</u>
- 15. Spreitzer et al. Systematic Classification of Side-Channel Attacks: A Case Study for Mobile Devices, https://arxiv.org/pdf/1611.03748.pdf
- 16. Lentzsch et al., Hey Alexa, is this Skill Safe?: Taking a Closer Look at the Alexa Skill Ecosystem, https://anupamdas.org/paper/NDSS2021.pdf
- 17. Blanchet et al., Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif, <u>https://bblanche.gitlabpages.inria.fr/publications/BlanchetFnTPS16.pdf</u>
- 18. Cremers et al., A Comprehensive Symbolic Analysis of TLS 1.3, https://acmccs.github.io/papers/p1773-cremersA.pdf
- 19. Cerdeira et al., SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems, <u>https://www.cs.purdue.edu/homes/pfonseca/papers/sp2020-tees.pdf</u>
- 20. Stan, O.P.; Enyedi, S.; Corches, C.; Flonta, S.; Stefan, I.; Gota, D.; Miclea, L. Method to Increase Dependability in a Cloud-Fog-Edge Environment. Sensors 2021, 21, 4714. https://doi.org/10.3390/s21144714

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is essential in cyber-physical systems and familiarizes students with the basic security problems and solutions. The material is continuously adapted to the requirements of potential employers and to the feedback of already employed graduates.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Method of analysis, synthesis and integration of theoretical information	Exam	50%
10.5 Seminars /Laboratory/Project	Method of analysis, synthesis and integration of theoretical information	Project	30%
	Problem solving corresponding to laboratory meetings	Presentation of solutions, answers to questions	5%
	Scientific paper	 Organization - adherence to IEEE format and structure; concordance and flow of work Content - relevance and comprehensive coverage of subject matter; application of 	15%

		concepts presented in the				
		course; reflection of critical				
		thinking skills				
		3. Inclusion of a minimum of 10				
		references				
10.6 Minimum standard of performance						
- Attend laboratory meetings and complete all assignments						
- Concurrent conditions for passing the exam						
- Minimum of 5 points from the exam						

-	Minimum !	5 points	from	project +	scientific	paper
	I WIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	s ponits		project	Jerentine	puper

Date of filling in: 16.06.2024		Title Surname Name	Signature
	Lecturer	Assoc.prof.Ovidiu Stan	
	Teachers in charge of applications	Assoc.prof.Ovidiu Stan	

Date of approval in the Automation Department

Head of department Prof. dipl. eng. Honoriu VĂLEAN, PhD

Date of approval in the Faculty of Automation and Computer Science

Dean Prof. dipl. eng. Mihaela Dinsoreanu, PhD