SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	6.

2. Data about the subject

2.1 Subject name Physics						
2.2 Course responsible / lecturer Prof. dr. fiz. Radu Fechete					. Radu Fechete	
2.3 Teachers in charge of seminars / Lect. dr. Dumitrita Corpodean laboratory / project						
2.4 Year of study	Ι	2.5 Sem	emester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			С
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DF		
2.7 Subject category DI – Impusă, D			Op – opț	ionald	ă, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars		Laboratory	1	Project	
3.2 Number of hours per	5	or writeri.	course	2	Jerninars		Laboratory	-	Troject	
	42	of which:	Course	28	Seminars		Laboratory	14	Project	
semester										
3.3 Individual study:										
(a) Manual, lecture materia	l and n	otes, bibli	ography							16
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14			
(d) Tutoring								10		
(e) Exams and tests							3			
(f) Other activities:							5			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 58										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Good knowledge in high school physics
	Good knowledge in high school mathematics
4.2 Competence	Some knowledge in operating computers (Word, Power Point, Excel, HTML,
	JavaScript).

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	N/A

6. Specific competence

6.1 Professional competences	The students will be able to:
	 Manipulate the main physical quantities and measurement unit by using the fundamental physical laws characteristic to the studied phenomena during the solving of the home work problems (the seminar is missing).
	 Use the measurement devices during the laboratory time, like: ammeter, voltmeter, ohmmeter, thermometer, thermocouple, spectroscope,

	 microscope, luxmeter. Evaluate the measurement errors, the absolute and the relative errors. To define and apply some basics concepts, physically principles and theory applied to computer science and engineering. To identify and analyze specific problems and to elaborate strategies to solve them. To be able to identify diverse physical systems, to describe their properties and relations/interactions between the system components.
6.2 Cross competences	 The students will be able to: Draw graphics of the variation of a specific quantity function of various parameters which are measured experimentally. Plot the graphics using computer scientific software like Origin. Operate with units with different order of magnitude and with the physical constants Write a paper into a scientifically form using a MS Word template.

7. Discipline objective (as results from the key competences gained)

7.1 General objective	 Introduction of the most important physical quantities that are encountered in automation engineering. Introduction of the main laws of physics that play a central role in automation engineering applications.
7.2 Specific objectives	 Understanding of the most important laws of classical mechanics Knowledge of the oscillatory and wave phenomena Knowledge of the sound characteristics and transfer phenomena Knowledge of the electrical, magnetically and electromagnetic phenomena. Knowledge of the quantum mechanical phenomena. The ability to document alone in a given scientific problem using the books library and the Internet. The ability to elaborate and to present a report on a given scientific problem The ability to represent graphically the physical quantities. The ability to use commercial computer programs for interpretation of the experimental data. The ability to solve a given physical problem and to express it in a mathematical form. The ability to work in a team for solving real physical problems

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
C1. Introduction in Physics. Fundamental and derivate			
physical quantities and their measurement units. Basics of	2		
kinematics:		Didactic discourse,	
C2. Elements of motion (reference system, trajectory, space).		exposure and explanation of	
Velocity. Linear motions with constant velocity. Acceleration.		curricular subjects, narrative-	
Linear motion with constant acceleration.	2	story related to the physics history and association with	
Kinematics: Curvilinear motions (trajectory, velocity and		real life facts. Didactic	
acceleration).		conversation	
C3. Circular motion (angle, circular velocity, circular		(heuristics and catechetic) in which the students are	
acceleration, law of motion with uniform angular velocity,		involved.	
law of motion with uniform angular acceleration). Relations	2	Demonstration of physical	
between linear and circular quantities. Specific measurement		laws in mathematical form and using objects to	
units.		represents the	

Ca D service ast and set and statistics of a service to statist	T		
C4. Dynamics: 1 st , 2 nd and 3 rd principles of dynamics. Inertial		physical phenomena at reduced scale.	
mass. Force. Linear momentum. Mechanic work. Power.	2	Demonstration with actions	
Energy (kinetic, potential, total).		performed by students	
C5. Momentum of force. Angular momentum. Conservations laws of: linear momentum, kinetically momentum, energy.	2	which are asked to: extract from problem the	
C6. Oscillatory motion: Linearly harmonically oscillator.	2	significant data, to observe,identify and	
Dumped oscillations. Forced oscillations, resonance.	2	classifyphysical laws and	
C7. Waves. Wave function. Differential equation,		types of motions.	
Characteristic phenomena: reflection, refraction,	2		
interference, diffraction. Standing waves.			
C8. Acoustics: Definition. Sound sources. Fundamental sound			
and superior harmonics. Sounds quality. Closed chambers	2		
acoustics, sound reverberation, reverberation time.			
C9. Electricity. Introduction. Electric charge. Coulombian			
Force. Electric Field. Electric Field intensity. Electric Flux.	2		
Gauss law for the electric field. Electric field work.			
C10. Electric current. Definition. Electric current intensity.			
Density of the electric current. Ohm's law. Electrons in solids.	2		
Electrically conductibility. Elements of electric circuit.			
C11. Magnetism: Magnetic field. Sources of the magnetic			
field. Lorentz force.	2		
C12. Magnetic flux. Gauss law for the magnetic field. Element	2		
of current. Magnetic force (Laplace force). Biot-Savart law.	Z		
C13. Magnetic field produced by a liner conductor. Magnetic			
field produced by a loop. Ampere's law. Electromagnetic	2		
induction. Faraday's law.			
C14. Maxwell's equations (differential and integral forms).			
Electromagnetic waves: Maxwell's equations without	2		
sources, velocity, transversally, intensity, and range			
Bibliography			
In UTC-N library			
1. R. Fechete, Fundamental physics for engineers, course notes.	2004		
2. E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Nap	oca 2004		
 R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008. Simona Nicoara, Codruta Badea, Radu Fechete, Problems and Appl 	lications o	f PHYSICS for Students of Engine	ering
U.T. PRESS, Cluj - Napoca, ISBN 978-606-737-619-7, pg. 154, (2022).		in this is for students of English	, cring,
5. I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.			
6. I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999.			
Multimedia teaching aids			
 7. Microsoft Encarta Encyclopedia. 8. Encyclopedia Britannica. 			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
L1. Work Protection. The study of thermoelectrically effect.	2	Heuristic discovery	
L2. Longitudinal and transverse standing waves.	2	In laboratory of some physical phenomena.	
L3. Optical spectroscopy.	2	Problematization	

L4. The study of photoelectric effect.		(problematize) presentations of laws and
L5. The determination of the energy gap of a semiconductor.	2	principles of
L6. The study of Hall Effect.	2	general physics with situations from real
L7. Polarizations of light.	2	life, and situations from the future work of students.

Bibliography

- 1. R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara, I. Coroiu, C. Badea, E. Culea, I. Cosma, N. Serban, Fizica: Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014).
- 2. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/ThermoelectricEffect/</u>
- 3. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/StandingWaves/</u>
- 4. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/AtomicSpectra/</u>
- 5. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PhotoelectricEffect/</u>
- 6. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/HallEffect/</u>
- 7. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/EnergyGap/</u>
- 8. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PolarizationOfLight/</u>
- 9. <u>http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng_2020-2021.html</u>

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical Knowledges accumulated at class, individual study	Written test (9 questions, each one 1 p)	70%
Seminar	-	-	-
Laboratory	Practical knowledges (abilities) accumulated in TUCN Laboratory + Individual study (essays on a general Physics subject or practical)	Essay, Practical Presentation, PPT presentation, written Problems, Numeric simulations of physical processes. On Line Assessment	30%
Project	-	-	-
Minimum standa	rd of performance:		

2.75/10 points (2.75 mark + (2.75 student – 1 default = 1.5) total 4.5 rounded to 5) + all laboratories

Date of filling in: 26.06.2023	Teachers	Title First name Last name	Signature
	Course	Prof. dr. fiz. Radu Fechete	
	Applications	Lect. dr. ing. fiz. Dumitrita Corpodean	

 Date of approval in the department
 Head of department,
Prof. dr. ing. Rodica Potolea

 Date of approval in the Faculty Council
 Dean,
Prof. dr. ing. Liviu Miclea