SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	53.

2. Data about the subject

2.1 Subject name			Inform	Information Systems			
2.2 Course responsible/le	cture	r	Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro				
2.3 Teachers in charge of laboratory/ project	semii	nars/	Assoc.	Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro			
2.4 Year of study	IV	2.5 Sem	ester	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е	
2.7 Cubicat actogory	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DS		
2.7 Subject category DI – Impusă,			DOp – c	pțio	nală, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	56	of which:	Course	20	Seminars		Laboratory	20	Drainet	
semester	30	or writeri.	Course	28	Seminars	Labo	Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography						20				
(b) Supplementary study in the library, online and in the field							20			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							15			
(d) Tutoring										
(e) Exams and tests							5			
(f) Other activities:						9				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	69
3.5 Total hours per semester (3.2+3.4)	125
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	Software engineering (UML), database design
4.2 Competence	Object-oriented design, UML usage

5. Requirements (where appropriate)

5.1. For the course	50% (attendance)
5.2. For the applications	80% (attendance)

6. Specific competence

6.1 Professional competences	C4 - Improving the performances of the hardware, software and communication systems (1 credit)
	 C4.1 - Identifying and describing the defining elements of the performances of the hardware, software and communication systems C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems C4.3 - Applying the fundamental methods and principles for increasing the
	performances of the hardware, software and communication systems

	C4.4 - Choosing the criteria and evaluation methods of the performances of
	the hardware, software and communication systems
	C4.5 - Developing professional solutions for hardware, software and
	communication systems based on performance optimization
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the
	integrity of hardware, software and communication systems (1 credit)
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,
	security and the computing system's interaction with the environment and the human operator
	C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
	C5.3 - Using fundamental principles and methods for ensuring the security, the
	safety and ease of exploitation of the computing systems
	C5.4 - Proper utilization of the quality, safety and security standards in the field
	of information processing
	C5.5 - Creating a project including the problem's identification and analysis, its
	design and development, also proving an understanding of the basic quality requirements
	C6 - Designing intelligent systems (2 credits)
	C6.1 - Describing the components of intelligent systems
	C6.2 - Using domain-specific tools for explaining and understanding the
	functioning of intelligent systems
	C6.3 - Applying the fundamental methods and principles
	for specifying solutions for typical problems using intelligent systems
	C6.4 - Choosing the criteria and evaluation methods for the quality,
	performances and limitations of intelligent systems
	C6.5 - Developing and implementing professional projects for intelligent systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Improve requirements management and design abilities of students in their senior year.
7.2 Specific objectives	Apply RUP metholologies for requirements management and design patterns

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Requirements Maturity Management	2		
RUP – Overview and Best Practices	2		
RUP –Iterative Development	2		
The Requirements Discipline	2		
Capturing Requirements: Use Cases (I)	2		
Capturing Requirements: Use Cases (II) – Best Practices	2		
Analysis Model Artifacts: Vision, Glossary, Supplementary	2		
Specification (I)		Video presentation	
Analysis Model Artifacts: Vision, Glossary, Supplementary	2	video presentation	
Specification (II)			
Domain Model	2		
GRASP Design Patterns (I)	2		
GRASP Design Patterns (II)	2		
Use Case Realizations with GRASP Design Patterns (I)	2		
Use Case Realizations with GRASP Design Patterns (II)	2		
Use Case Realizations with GRASP Design Patterns (III)	2		
Bibliography			
1. Craig Larman – Applying UML and Patterns (2003)			

2. Alistair Cockburn – Writing Effective Use Cases (2002)			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Requirements Artifacts: Vision, Glossary, Supplementary Specification	4		
Generate a Vision document based on a RUP template	4	Students are	
Generate a Supplementary Specification document based on a RUP template	4	encouraged to use their knowledge in	
Requirements Artifacts: Use Cases	4	implementation	
Generate a Use Case document based on a RUP template	4	projects	
Generate an Analysis Model	4		
Lab Assessment	4		
Bibliography			
1. Keneth Rubin – Essential Scrum (2012)			

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The knowledge gained overlapping demands of all IT employers.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theory and problem solving	exam	90%
Seminar			
Laboratory	Ability to apply theoretical knowledge	Artefacts evaluation	10%
Project			

Minimum standard of performance:

Proven understanding of requirements artifacts and ability to generate a design model.

Grade calculus: 90-% exam, 10% lab

Conditions for participating in the final exam: Lab ≥ 5

Conditions for promotion: Grade ≥ 5

Note: students attending less than 50% of the lectures are not entitled to address any claims with respect to their

evaluation

	Titulari	Titlu Prenume NUME	Semnătura
Date of filling in: 12.06.2023	Course	Assoc. prof. dr. eng. Ovidiu Pop	
	Applications	Assoc. prof. dr. eng. Ovidiu Pop	

Date of approval in the department	Head of department, Prof. dr. eng. Rodica Potolea	
Date of approval in the Faculty Council	Dean, Prof. dr. eng. Liviu Miclea	