SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	48.2

2. Data about the subject

2.1 Subject name			Translator design				
2.2 Course responsible / I	ectur	rer Assoc. prof. dr. eng. Emil Şefan Chifu - emil.chifu@cs.utcluj.ro					
2.3 Teachers in charge of laboratory / project	semir	nars /	Assoc. prof. dr. eng. Emil Ştefan Chifu - emil.chifu@cs.utcluj.ro				
2.4 Year of study	IV	IV 2.5 Semester			2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E	
DF – fundam			entală, DD – în domeniu, DS – de specialitate, DC – complementară			DS	
2.7 Subject category	DI –	DI – Impusă, DOp – opțională, DFac – facultativă					

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per	70	of which:	Course	28	Seminars		Laboratory	28	Project	14
semester							•			
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography								25		
(b) Supplementary study in the library, online and in the field									15	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays									27	
(d) Tutoring									10	
(e) Exams and tests									3	
(f) Other activities:									0	

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	80
3.5 Total hours per semester (3.2+3.4)	150
3.6 Number of credit points	6

4. Pre-requisites (where appropriate)

4.1 Curriculum	Formal Languages and Translators, Computer Programming, Data Structures and Algorithms
4.2 Competence	- Basic knowledge of programming and data structures (preferably in the C and Java languages) - Concepts of generative grammars and formal languages - To know the basic principles in the design of interpretors and translators for languages artificial - Basic knowledge of relational databases and web applications

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Computers, specific software

6. Specific competence

6.1 Professional competences	C4 - Improving the performances of the hardware, software and communication
	systems (2 credits)

	C4.1 - Identifying and describing the defining elements of the performances of the							
	hardware, software and communication systems							
	C4.2 - Explaining the interaction of the factors that determine the performances of							
	the hardware, software and communication systems							
	C4.3 - Applying the fundamental methods and principles for increasing the							
	performances of the hardware, software and communication systems							
	C4.4 - Choosing the criteria and evaluation methods of the performances of the							
	hardware, software and communication systems							
	C4.5 - Developing professional solutions for hardware, software and							
	communication systems based on performance optimization							
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity							
	of hardware, software and communication systems (2 credits)							
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security							
	and the computing system's interaction with the environment and the human							
	operator							
	C5.2 - Using interdisciplinary knowledge for adapting the computing system to the							
	specific requirements of the application field							
	cs.3 - Using fundamental principles and methods for ensuring the security, the sa							
	and ease of exploitation of the computing systems							
	C5.4 - Proper utilization of the quality, safety and security standards in the field of							
	information processing							
	C5.5 - Creating a project including the problem's identification and analysis, its design							
	and development, also proving an understanding of the basic quality requirements							
	C6 - Designing intelligent systems (1 credit)							
	C6.1 - Describing the components of intelligent systems							
	C6.2 - Using domain-specific tools for explaining and understanding the							
	functioning of intelligent systems							
	C6.3 - Applying the fundamental methods and principles							
	for specifying solutions for typical problems using intelligent systems							
	C6.4 - Choosing the criteria and evaluation methods for the quality, performances							
	and limitations of intelligent systems							
	C6.5 - Developing and implementing professional projects for intelligent systems							
6.2 Cross competences	N/A							
ole oloss competences	. 7,							

7. Discipline objective (as results from the key competences gained)

7.1 General objective	 To know the phases of programming language translators: lexical analysis, syntactic analysis, and code generation.
	To master the phases of Natural Language Processing and the BERT language models.
7.2 Specific objectives	 To know the classes of languages for which efficient translators and interpreters can be implemented.
	To know the rules for processing typical statements for interpreters.
	By using the Prolog language, to build DCG parsers for natural language.
	 To implement in the NLTK toolkit different phases of natural language processing.
	 To define, train and test natural language text classifiers, by using the pretrained BERT language models.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Descriptive tools: extended Backus-Naur form.	2		
Regular grammars and finite automata: finite automata, state diagrams and regular expressions.	2	- The main ideas with multimedia techniques	
Context-free grammars and pushdown auromata: examples.	2	teciniques	

Lexical analysis: modules and interfaces (decomposition of the grammar, lexical analyzer interface), construction of the lexical analyzer (state diagrams, reserved words method).	2	- Details and examples at the blackboard, in interaction with the	
LL parsers: the LL(1) parsing algorithm for extended BNF grammars.	2	students - There are	
LL parsers: computation of FIRST and FOLLOW sets.	2	consultation hours	
LL parsers: examples of recursive-descent applications.	2	- Students are invited to collaborate in	
Theoretical results concerning the $LL(k)$ and $LR(k)$ grammars.	2	research projects	
LR parsers: LR(0) states, SLR(1) grammars.	2		
LR parsers: LALR(1) grammars.	2		
LR parsers: the LALR(1) algorithm.	2		
LR parsers: shift-reduce transitions, chain production elimination.	2		
LR parsers: LR table compression.	2		
Basic concepts of attribute grammars.	2		

Bibliography

- 1. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
- 2. I.A. Leţia and E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţă, 1998.
- 3. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory			
Building recursive-descent parsers from extended	2		
BNF grammars.	2		
Recursive-descent (RD) applications: building	2		
abstract syntax trees (AST) for regular expressions.	2		
DR applications: code generator for an imperative			
language, using AST as intermediate code. Lowering	2		
the arithmetic expressions.			
Code generator for an imperative language, using			
AST as intermediate code. Lowering the loops and	2		
the conditional statements.			
Definite clause grammars (DCGs) for parsing natural	2		
language.	2	Brief presentation at the blackboard	
DCG: building parse trees and checking agreement.	2	(the teacher), implementing and testing	
DCG: dealing with natural language ambiguity.	2	examples and exercises on the	
Checking agreement in the Romanian language.		computer (the students)	
DCG: machine translation.	2	computer (the students)	
The NLTK toolkit: semantic analysis of natural	2		
language with Lambda calculus.	2		
NLTK: subcategorization frames.	2		
NLTK: using the FrameNet lexical resourse, semantic	2		
role labeling (SRL).			
NLTK: discourse representation structures (DRS),	2		
anaphora resolution.	2		
NLTK: Dependency grammars and dependency	2		
parsers.	2		
NLTK: the phases of a natural language processing	2		
pipeline: lemmatizing, part of speech tagging,			

named entity recognition, using the WordNet lexical			
thesaurus.			
Project			
Numerical encoding of natural language text: bag of	2	Brief presentation at the blackboard (the teacher), implementing and testing examples and exercises on the computer (the students)	
words (BoW), TF-IDF, and bag of n-grams.	2		
Sentiment analyzer (classifier) using Logistic	2		
Regression (LR).	2		
Document categorization by using Logistic			
Regression: training and testing.	2		
Text encoding by using Word to Vec (word2vec):			
document categorization.	2		
Using the pretrained BERT language model:	2		
sentinent analyzer using Logistic Regression.	2		
Using BERT: fine-tuning the pre-trained BERT	2		
vectors.	2		
Using BERT: transfer learning for different			
downstream tasks: summarization, machine	2		
translation, semantic role labelling (SRL).			
Bill: I			

Bibliography

- 1. https://www.cs.utexas.edu/users/novak/lexpaper.htm
- 2. Online lab manual
- 3. Hugging Face https://huggingface.co/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the principles of efficient design and implementation of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Lectures	- Problem-solving skills - Attendance, Activity	- Gradual evaluation during the lectures, based on a dialog with the students and their activity at the blackboard during the lectures - There are consultation hours before the exam, during which bonuses for the final exam are granted - The final exam is a written exam	44%
Laboratory	- Problem-solving skills	Lab works:	35%
Project	- Attendance, Activity	 - Gradual evaluation of the activity of students, at each lab meeting - Bonuses for the final exam are granted Project lab meetings: 	
		- Gradual evaluation of the activity of students, at each project lab meeting	21%

Minimum standard of performance:

Modelling typical engineering problems using the domain specific formal apparatus.

Grade calculus: 35% lab + 21% project + 44% final exam Conditions for participating in the final exam: Lab \geq 5

Conditions for promotion: grade ≥ 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
12.06.2023	Course	Assoc. prof. dr. eng. Emil Ştefan Chifu	
Αŗ	Applications	Assoc. prof. dr. eng. Emil Ştefan Chifu	

Date of approval in the department	Head of department, Prof. dr. eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof. dr. eng. Liviu Miclea