SYLLABUS

1. Data about the program of study

	. 3 ,	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science / Engineer
1.7	Form of education	Full time
1.8	Subject code	42.

2. Data about the subject

2.1	Subject n	ame				Intell	igent Systems				
2.2	Course re	esponsi	ble/lec	turer		Prof.	dr. eng Adrian G	roza - <u>Adria</u>	ın.Groz	a@cs.utcluj.ro	
						Conf.	dr. eng. Radu Ră	zvan Slăve:	scu - <u>Ra</u>	adu.Razvan.Slaves	cu@cs.utcluj.ro
						Prof.	dr. eng Adrian G	roza - <u>Adria</u>	n.Groz	a@cs.utcluj.ro	
2.3	Teachers	in cha	rge of a	pplications		Conf.	dr. eng. Radu Ră	zvan Slăve:	scu - Ra	azvan.Slavescu@c	s.utcluj.ro
						Conf.	dr. eng. Anca Ma	ărginean - <i>I</i>	Anca.N	larginean@cs.utcl	uj.ro
	Year of									Subject	DS/OB
2.4	study	Ш	2.5	Semester	6	2.6	Assessment	Exam	2.7	category	

3. Estimated total time

3.1	Number of hours per week	4	of which	course	2		Lab	2
3.2	Number of hours per semester	56	of which	course	28		Lab	28
3.3 T	ime budget (per semester)							Hours
(a) N	lanual, lecture material and notes, bi	ibliogra	aphy					18
(b) Si	upplementary study in the library, or	nline ar	nd in the fiel	d				5
(c) Pr	eparation for seminars/laboratory w	orks, ł	nomework, r	eports, por	tfolios, essay	S		10
(d) T	utoring							6
(e) Ex	kams and tests							5
(f) Ot	her activities						_	0
				T				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Artificial Intelligence
4.2	Competence	Fundamentals of Computer Programming, Discrete Mathematics, Calculus

4 Requirements (where appropriate)

5.1	For the course	Blackboard, Projector, Computer
5.2	For the applications	Computers with Linux, Specific Software

6. Specific competences

Professional competences	C6 – Design of intelligent systems
	C6.1 – Describing the components of intelligent systems
	C6.2 - Usage of specific instruments of the domain for explaining and understanding the
	functioning of intelligent systems
	C6.3 – Application of principles and basic methods for the specification of solutions typical
	problems using intelligent systems
	C6.4 – Choosing criteria and methods for the evaluation of quality, performance and limits of
	intelligent systems
	C6.5 – Development and implementation of professional designs for intelligent systems

Cross competences	N/A
-------------------	-----

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowledge of representation and reasoning of fundamental problems of intelligent systems
7.2	Specific objectives	Reasoning under uncertainty, acquisition of knowledge, Machine learning (supervised, unsupervised, reinforcement)

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
1 Introduction.	Slides, Algorithms,	
2 Learning from Examples. Learning decision trees.	Quality of	
3 Hypothesis evaluation. Overfitting. Regression and classification. Naive Bayes classifier.	solutions, Exceptions,	
4 Non-parametric learning. Support Vector Machines. K-Nearest Neighbor. Ensemble Learning.	Limits in the representation of	
5 Artificial Neural Networks.	the real world	
Deep Learning: convolutional neural networks (CNN), recurrent Neural networks (RNN). Regularization.		
7 Transformers. Attention Mechanism. Language Models. Natural Language Processing with Deep Learning. Information Retrieval. Word-to-vector representation.		
8 Unsupervised learning. Association mining: frequent set generation, rule generation, compact representation of frequent sets		
9 Unsupervised learning. Data clustering algorithms. K-means. Hierarchical clustering.		
Making complex decisions: value iteration, policy iteration, partially observable MDP, game theory.		
11 Reinforcement Learning		
Neuro-symbolic integration. Knowledge in Learning: explanation-based learning, relevant information, Inductive Logic Programming		
13 BDI Agents: goals, events, plan selection, values.		
14 Explainable AI. Ethics and responsability.		

Bibliography

- 1. Russell, Stuart, and Peter Norvig. "Artificial intelligence: a modern approach (4th edition)." Essex: Pearson (2020).
- 2. Aurelien Geron Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition, O'Reilly Media, 2022
- 3. Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. *Introduction to data mining*. Pearson Education India, 2016.
- 4. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." *Nature* 521.7553 (2015): 436-444.
- 5. Goldberg, Yoav. "A primer on neural network models for natural language processing." *Journal of Artificial Intelligence Research* 57 (2016): 345-420.

8.2 Applications (seminary/lab/project)	Hours	Teaching methods	Observations
1. Learning decision trees. Evaluating classification models	2		
2. Learning linear models. Regression. Evaluating regression models	2		
3. Flow end2end of Machine Learning	2		
4. Applying Machine Learning methods on a new scenario	2		
5. Naive Bayes classifier, KNN, ensemble learning, Random Forest	2		
6. Artificial Neural Networks and training algorithms	2	First assessment	
7. Artificial Neural Networks. Loss functions. Train monitoring. Overfitting, Underfitting	2		
8. Convolutional Neural Networks. Transfer learning	2		
9. Recurrent Neural Networks	2		
10. Transformers. Natural Language Processing.	2		
11. Unsupervised learning. Hierarchical clustering. K-means	2		

algorithm		
12. Unsupervised learning. Apriori algorithm	2	
13. Natural Language Processing. Parse trees. BDI agents	2	Experiments
14. Final assessment	2	Final assessment

Bibliography

Various AI instruments on the web.

Machine Learning Notebooks, Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow https://github.com/ageron/handson-ml3

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The textbook chosen for this course is used worldwide by many prestigious universities and is continuously discussed at this level by the university community and companies in the field.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final
				methods		grade
Course		Problems and specific		Written exam		60%
		instruments		(moodle)		
Lab		Using and evaluating intelligent		2 milestone		40%
		instruments		evaluations		
				(moodle)		

Minimum standard of performance

The ability to draw specific algorithms. Ability to model realistic scenarios. The ability to propose solutions to identified problems. Ability to meet deadlines.

Calculation of the discipline grade: 40% laboratory + 60% exam Conditions for participation in the final exam: Laboratory \geq 5

Promotion conditions: Grade ≥ 5

Date of filling in:	Teachers	Title First name Last name	Signature
19.06.2023	Course	Prof. dr. eng. Adrian Groza	
	Course	Conf. dr. eng. Radu Răzvan Slăvescu	
	Applications	Prof. dr. eng. Adrian Groza	
		Conf. dr. eng. Radu Răzvan Slăvescu	
		Conf. dr. eng. Anca Marginean	

Date of approval in the department	Head of department, Prof. dr. eng. Rodica Potolea		
Date of approval in the Faculty Council	Dean, Prof. dr. eng. Liviu Miclea		