
1/3

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca
1.2 Faculty Faculty of Automation and Computer Science
1.3 Department Computer Science
1.4 Field of study Computer Science and Information Technology
1.5 Cycle of study Bachelor of Science
1.6 Program of study/Qualification Computer science/ Engineer
1.7 Form of education Full time
1.8 Subject code 41.

2. Data about the subject

2.1 Subject name Software design
2.2 Course responsible/lecturer Prof. dr. eng. Mihaela Dinsoreanu - mihaela.dinsoreanu@cs.utcluj.ro
2.3 Teachers in charge of seminars/
laboratory/ project

Lect. dr. info. Anca Iordan - anca.iordan@cs.utcluj.ro

2.4 Year of study III 2.5 Semester 6 2.6 Type of assessment (E - exam, C - colloquium, V -
verification) E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DS
DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time
3.1 Number of hours per week 5 of which: Course 2 Seminars Laboratory 2 Project 1
3.2 Number of hours per
semester 70 of which: Course 28 Seminars Laboratory 28 Project 14

3.3 Individual study:
(a) Manual, lecture material and notes, bibliography 10
(b) Supplementary study in the library, online and in the field 5
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 6
(d) Tutoring 4
(e) Exams and tests 5
(f) Other activities:

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 30
3.5 Total hours per semester (3.2+3.4) 100
3.6 Number of credit points 4

4. Pre-requisites (where appropriate)
4.1 Curriculum Programming Techniques, Software Engineering
4.2 Competence Design methods, Data Structures, Basic Design Patterns

5. Requirements (where appropriate)

5.1. For the course Blackboard, video projector, internet connected computer, Moodle, Teams.
5.2. For the applications 16 internet connected computers, Specific software, GitHub, Teams. Labs and

project attendance is compulsory.

6. Specific competence
6.1 Professional competences C3 - Problem solving using specific Computer Science and Computer

Engineering tools
C3.1 Identifying classes of problems and solving methods that are specific to
computing systems
C3.2 Using interdisciplinary knowledge, solution patterns and tools, making
experiments and interpreting their results
C3.3 Applying solution patterns using specific engineering tools and methods

mailto:mihaela.dinsoreanu@cs.utcluj.ro
mailto:anca.iordan@cs.utcluj.ro

2/3

C3.4 Evaluating, comparatively and experimentally, the available alternative
solutions for performance optimization
C3.5 Developing and implementing software solutions for specific problems

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)
7.1 General objective Understand and model requirements, analyse and design appropriate

architectural solutions, on various abstraction levels
7.2 Specific objectives Identify the most relevant functional and non-functional requirements of a

software system and document them
 Understand Class and package design principles
 Analize software architectures against he known design principles
 Recognize fundamental software architectural styles and design patterns
 Design appropriate software architectures based on given requirements

8. Contents
8.1 Lectures Hours Teaching methods Notes
Introduction. SOLID class design principles 2

Face-to-Face lecture,
Powerpoint slides,
Quizzes, discussions,
course materials
Moodle

GRASP class design principles and package design principles 2
Architectural styles (Layers, Event-driven, MVC) 2
Domain-driven design 2
Service-oriented design 2
Midterm/Live coding session 2
Enterprise app architectures (Resource Access) 2
Enterprise app architectures (Presentation) 2
Enterprise app architectures (Concurrency) 2
Applying Creational Design Patterns 2
Applying Structural Design Patterns 2
Applying Behavioral Design Patterns 2
Software Design Quality metrics 2
Final review 2
Bibliography
1. Juval Lowy, Righting software, O’Reilly, 2020
2. Mark Richards, Software Architecture Patterns, O’Reilly, 2015
3. Vaughn Vernon, Domain Driven Design Distilled, Addison Wesley, 2016
4. Ian Gorton, Essential Software Architecture, Springer, second ed. 2011.
5. Taylor, R., Medvidovic, N., Dashofy, E., Software Architecture: Foundations, Theory, and Practice, 2010, Wiley.
6. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 3rd edition, 2013.
7. Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sornmerlad, and Michael Stal. 2001. Pattern-oriented

system architecture, volume 1: A system of patterns. Hoboken, NJ: John Wiley & Sons. [POSA book]
8. Fowler Martin, Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002.
9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. AddisonWesley, 1995.
10. Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative

Development (3rd Edition), Prentice Hall, 2004, ISBN: 0131489062
Course materials published at moodle.cs.utcluj.ro
8.2 Applications – Seminars/Laboratory/Project Hours Teaching methods Notes
Revision exercises (OOP, UML, testing techniques). SOLID Principles 2

tutoring,
onsite/GitHub
assignments
development and
discussions

Database connections and operations 2
GRASP and MVP Pattern 2
MVC and MVVM 2
Domain-driven design - Entities, aggregates, repositories 2
Service-oriented design 2
Data Access patterns 2
XML and JSON 2
Front-end patterns 2

3/3

Creational Design Patterns 2
Structural Design Patterns 2
Behavioral Design Patterns 2
Catch-up Session 2
Review and exam preparation 2
Bibliography
Lab tutorial
Java tutorial - docs.oracle.com/javase/tutorial/
C# tutorial – msdn.microsoft.com
*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

The discipline is a domain discipline in Computers and Information Technology, its content being fundamental in the
design of software solutions. The content of the discipline contains both fundamental architectural solutions and
modern solutions that address the current complexity of software systems. The content is compatible with similar
subjects taught at prestigious universities in the country and abroad. In developing the content, important companies
from Romania were consulted and it was evaluated by Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type Assessment criteria Assessment methods Weight in the
final grade

Course Ability to understand requirements,
analyse alternative solutions and design an
appropriate solution, attendance, activity
(course_eval)

written exam, Moodle quizzes
during the semester

p = 60%

Seminar
Laboratory Analyse requirements and alternative

solutions, design an appropriate solution
and implement it, attendance, activity
(lab+proj_eval)

Assignments, project
deliverables Github 1 - p

Project
Minimum standard of performance:
Grade calculus: p * course_eval + (1-p)* lab+proj_eval
Conditions for participating in the final exam: Lab Grade ≥ 5 AND Project Grade ≥ 5
Conditions for promotion: final grade ≥ 5, course_eval ≥ 5

Date of filling in:
28.05.2023

Titulari Titlu Prenume NUME Semnătura

Course Prof. dr. eng. Mihaela Dinsoreanu

Applications
Lect. dr. info. Anca Elena Iordan

Date of approval in the department

Head of department,
Prof. dr. eng. Rodica Potolea

Date of approval in the Faculty Council Dean,
Prof. dr. eng. Liviu Miclea

