SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	38.

2. Data about the subject

2.1 Subject name	1 Subject name Formal Languages and Translators					
7 7 LAURSE RECONSIDIE/JECTURER				. dr. eng. Anca Marginean - <u>Anca.Marginean@cs.utcluj.ro</u>		
		.1	Assoc.	. prof	. dr. eng. Emil Ştefan. Chifu - <u>emil.chifu@cs.utcluj.ro</u>	
2.3 Teachers in charge of seminars/ Assoc. prof. dr. eng. Emil Stefan. Chifu - emil.chifu@cs.utcluj.ro						
laboratory/ project	oject Assist. drd. eng. Ana Rednic - Ana.Rednic@cs.utcluj.ro					
2.4 Year of study III 2.5 Sem		2 5 Sem	ester		2.6 Type of assessment (E - exam, C - colloquium, V -	F
		ester	-	verification)	-	
DF – fundame		entală,	DD –	în domeniu, DS – de specialitate, DC – complementară	DD	
2.7 Subject category	DI –	Impusă,	DOp – d	opțio	nală, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture materi	(a) Manual, lecture material and notes, bibliography							7		
(b) Supplementary study in the library, online and in the field							5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							4			
(d) Tutoring										
(e) Exams and tests							3			
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 19										
3.5 Total hours per semester (3.2+3.4) 75										
3.6 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer Programming, Data Structures and Algorithms
4.2 Competence	Basic knowledge of programming and data structures (preferably in the C
	language)

5. Requirements (where appropriate)

5.1. For the course	Onsite: Blackboard, Overhead projector, computer Online: Teams account, computer
5.2. For the applications	Computers, specific software / Teams account

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts (2 credits)

	 C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
	 C3 – Problems solving using specific Computer Science and Computer Engineering tools (2 credits) C3.1 – Identifying classes of problems and solving methods that are specific to computing systems C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 – Applying solution patterns using specific engineering tools and mehods C3.4 – Comparatively and experimentaly evaluation of the alternative solutions for performance optimization C3.5 – Developing and implementing informatic solutions for concrete problems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	 To know the phases, components, and algorithms used by typical language translators.
	 To provide a formal basis for the development of concepts relating to lexical and syntactic processors in translators.
7.2 Specific objectives	 To know the underlying formal models such as finite state automata and push-down automata, and to understand their connection to language definition through regular expressions and grammars.
	 To understand the relationships between formal descriptions of the automata in the formal language theory and their practical implementations as lexical and syntactic analyzers in translators.
	- To know the classes of languages for which a deterministic parser can be implemented.
	 To describe the syntax of languages to be implemented by using grammars and regular expressions.
	 To design, develop and test a software project, by utilizing specialized software tools (parser generators), in order to arrive at a translator for an artificial language.
	- To master and control the phenomena of ambiguity and
	nondeterminism (conflicts) which occur when using parser generators
	and lexical analyzer generators.
	 Introduction to natural language processing methods.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Descriptive tools: strings and rewriting systems, grammars.	2		
Descriptive tools: derivations and parse trees, exttended BNF notation	2	- The main ideas with multimedia	
Regular grammars and finite automata: finite automata.	2	techniques	

eaching materials ilable in the Teams	
tform	
etails and mples at the ckboard/ graphics	
let, in interaction h the students	
ahoot tests/ Teams ms tests	
iință, 1998. ols, Addison-Wesley	ı, 1986.
iching methods	Notes
ef presentation at e blackboard (the	
acher), plementing and	
sting examples and	
ercises on the	
mputer (the Idents)	

- 3. Online lab manual
- 4. <u>Hugging Face https://huggingface.co/</u>

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the basic principles in the design of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	 Problem-solving skills Attendance, Activity 	- Online test: Moodle Quiz/ Written test	60%
Seminar	-		
Laboratory	 Problem-solving skills Attendance, Activity 	 Lab test 1 and 2 Evaluation of the individual assignment 	20%
			20%
Project	-		
	rd of performance:		
Final grade calcu	al engineering problem using the lus: 40% lab + 60% final exam	domain specific formal apparatus.	

Conditions for participating in the final exam: lab ≥ 5

Conditions for promotion: Final grade \geq 5

Date of filling in:	Teachers	Title First name Last name	Signature
12.06.2023	Course	Assoc. prof. dr. eng. Anca Marginean	
	Course	Assoc. prof. dr. eng. Emil-Ştefan Chifu	
	Applications	Assoc. prof. dr. eng. Emil-Ştefan Chifu	
		Assist. drd. eng. Ana Rednic	

Date of approval in the department

Head of department, Prof. dr. eng. Rodica Potolea

Date of approval in the Faculty Council

Dean, Prof. dr. eng. Liviu Miclea