SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	36.

2. Data about the subject

2.1 Subject name			Graphic Processing			
2.2 Course responsible / I	ectur	er	Prof. dr. eng. Gorgan Dorian - dorian.gorgan@cs.utcluj.ro			
2.3 Teachers in charge of laboratory / project	semii	nars /	Assoc. prof. dr. eng. Bacu Victor - victor.bacu@cs.utcluj.ro Lect. dr. eng. Adrian Sabou - adrian.sabou@cs.utcluj.ro Lect. dr. eng. Constantin Nandra - constantin.nandra@cs.utcluj.ro			
2.4 Year of study	Ш	2.5 Sem	nester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е
2.7 Cubicat actagam.	DF –	fundam	entală, DD – în domeniu, DS – de specialitate, DC – complementară 💢 🛚 🗀			DD
2.7 Subject category DI – Impusă,			DOp – d	OOp — opțională, DFac — facultativă		

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and n	otes, bibl	iography							20
(b) Supplementary study in the library, online and in the field							6			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring							3			
(e) Exams and tests							5			
(f) Other activities:							•			0

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer programming (C language)
	Elements of Computer Assisted Graphics
4.2 Competence	Applications development in C programming language, Graphical systems
	architecture, The graphical processing pipeline

5. Requirements (where appropriate)

5.1. For the course	Projector, computer
5.2. For the applications	Laboratory attendance is mandatory
	Study of laboratory materials from the server

6. Specific competence

6.1 Professional competences	C4 – Improving the performances of the hardware, software and					
	communication systems (4 credits)					
	C4.1 – Identifying and describing the defining elements of the performances					
	of the hardware, software and communication systems					

	C4.2 – Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems C4.3 – Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems C4.4 – Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems C4.5 – Developing professional solutions for hardware, software and communication systems based on performance optimization
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

· · · · · · · · · · · · · · · · · · ·	
7.1 General objective	Study and experiment with the 3D photorealistic algorithms. Development of
	2D and 3D graphics applications.
7.2 Specific objectives	1. Creation of the graphic model of a 3D scene of objects
	2. Implementation and usage of the fundamental 3D graphics algorithms
	that can be found in the core of a graphic system
	3. Development of graphic applications in a high-level programming
	language (C, C++) based on graphics libraries (ex. OpenGL)
	4. Implementation of the main phases of the graphics transformation
	pipeline, in order to transform a 3D scene into an image.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Computational graphics	2		
Hidden line and surface removal algorithms. Part 1	2	New multimedia	
Hidden line and surface removal algorithms. Part 2	2	teaching approaches	
3D objects modeling. Polygonal models. Parametrical model. Procedural models.	2	will be used in classes.	During the
Particles based models	2		semester and
Polygonal objects rendering. Part 1	2	The course is	before each
Polygonal objects rendering. Part 2	2	interactive and	exam there
Illumination models. Local reflection model. Phong model	2	includes demonstrations that	are a few preparation
Shadow computation	2	exemplify graphical	hours
Texture mapping. Part1	2	methods and	planned.
Texture mapping. Part2	2	algorithms.	plannea.
Global reflection models. Ray-tracing algorithm	2		
Global reflection models. Radiosity algorithm	2		
Graphical animation	2		
63.1:		·	•

Bibliography

- 1. Watt A., "3D Computer Graphics". Addison-Wesley.
- 2. Watt A., Policarpo F.: "3D Games. Real-time Rendering and Software Technology". Addison-Wesley.
- 3. Shreiner D., Sellers G., Kessenich J., Licea-Kane B., "OpenGL Programming Guide", Addison-Wesley.
- 4. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphics. Principles and Practice". Addison-Wesley Pblishing Comp.

In virtual library

Course resources, https://moodle.cs.utcluj.ro/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Mathematics for computer graphics	2	Documentation and	Each student
Introduction to modern OpenGL	2	examples will be	will have to
Basic vertex and fragment shaders	2	available to the	develop a
Debugging methods	2	students, prior to the laboratory classes,	specific project
3D Transformations	2	on a dedicated	based on the
3D models and textures	2	server. The students	knowledge
First project evaluation	2	will work	acquired at

Lighting model - Part 1	2	independently but	the
Lighting model - Part 2	2	will also be assisted	laboratory
Shadow mapping	2	by the teacher.	hours.
Second project evaluation	2		
Cube maps and environmental mapping	2		
Normal mapping	2		
Final project assessment	2		
Bibliography			
 Curse and practical works, http://cgis.utcluj.ro/teaching/ 			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of 3D graphic systems and algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	The written exam evaluates the understanding of the information presented in classes and the ability to apply this knowledge. The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.	Evaluation is performed through written exam and activity at the course.	50% (E) 10% (AC)		
Laboratory	Laboratory assessment evaluates the practical abilities obtained by the students. Through homework assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.	Evaluation is performed through written and practical exam.	40% (L)		
Minimum standard of performance:					

Graduation requirement: M≥5, final mark M=0.5*E+0.4*L+0.1*AC
Requirement to participate to exam: L≥5

Data of filling in	Teachers	Title First name Last name	Signature
Date of filling in: 29.06.2023	Course	Prof.dr.eng. Dorian Gorgan	
	Applications	Conf.dr.eng. Victor Bacu	
		Lect.dr.eng. Adrian Sabou	
		Lect.dr.eng. Constantin Nandra	

Date of approval in the department

Head of department, Prof. dr. eng. Rodica Potolea Date of approval in the Faculty Council

Dean, Prof. dr. eng. Liviu Miclea