
1/4

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca
1.2 Faculty Faculty of Automation and Computer Science
1.3 Department Computer Science
1.4 Field of study Computer Science and Information Technology
1.5 Cycle of study Bachelor of Science
1.6 Program of study / Qualification Computer science / Engineer
1.7 Form of education Full time
1.8 Subject code 33.

2. Data about the subject

2.1 Subject name Software engineering
2.2 Course responsible / lecturer Prof. dr. eng. Eneia Todoran - Eneia.Todoran@cs.utcluj.ro
2.3 Teachers in charge of seminars /
laboratory / project

Assoc. prof. dr. Mitrea Paulina - Paulina.Mitrea@cs.utcluj.ro,
Assoc. prof. dr. eng. Mitrea Delia - Delia.Mitrea@cs.utcluj.ro

2.4 Year of study III 2.5 Semester 5 2.6 Type of assessment (E - exam, C - colloquium, V -
verification) E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DD
DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time

3.1 Number of hours per week 4 of which Course 2 Seminars Laboratory 1 Project 1
3.2 Number of hours per
semester 56 of which Course 28 Seminars

Laboratory 14 Project 14

3.3 Individual study:
(a) Manual, lecture material and notes, bibliography 20
(b) Supplementary study in the library, online and in the field 17
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 17
(d) Tutoring 5
(e) Exams and tests 10
(f) Other activities: 0

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 69
3.5 Total hours per semester (3.2+3.4) 125
3.6 Number of credit points 5

4. Pre-requisites (where appropriate)
4.1 Curriculum Object Oriented Programming, Programming Techniques
4.2 Competence Competences acquired in the above disciplines

5. Requirements (where appropriate)
5.1. For the course Blackboard / whiteboard, internet, projector, computer
5.2. For the applications Computers, internet, specific software

6. Specific competence
6.1 Professional competences C3 - Problems solving using specific Computer Science and Computer

Engineering tools (2 credits)
C3.1 - Identifying classes of problems and solving methods that are specific to
computing systems
C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making
experiments and interpreting their results
C3.3 - Applying solution patterns using specific engineering tools and mehods
C3.4 - Comparatively and experimentaly evaluation of the alternative solutions

mailto:Eneia.Todoran@cs.utcluj.ro
mailto:Paulina.Mitrea@cs.utcluj.ro
mailto:Delia.Mitrea@cs.utcluj.ro

2/4

 for performance optimization
C3.5 - Developing and implementing informatic solutions for concrete
problems

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)
7.1 General objective The overall objective of discipline consists in the study and application of

systematic, disciplined and quantifiable approaches in software systems
development

7.2 Specific objectives • Study and application of software development processes
• Understanding the specific activities of software engineering
• Knowledge of software engineering models
• Knowledge of specific tools that can assist software engineers in the

specification, design and validation process
• Knowledge of methods for software modeling and performance analysis
• Application of processes, methods and tools in small to medium-sized

software projects

8. Contents
8.1 Lectures Hours Teaching methods Notes
Introduction and overview of the course 2

Software development paradigms: basic (‘waterfall’, prototyping,
2

reusable components, formal methods) and evolutionary paradigms

(incremental development, spiral model, concurrent engineering)
Modern software processes: the unified software development

2

process, agile methods and extreme programming

Basic software engineering activities (specification, development,
2

validation, evolution): concepts and principles

Developing requirements: domain analysis, techniques for gathering
2

requirements, capturing requirements as use cases
Formal specification: formal modeling and analysis, introduction to

2

probabilistic model checking

Tools in support of formal methods: PRISM probabilistic model
2

checker, software performance modeling and analysis.

Modeling with classes: UML class and object diagrams, semantics of
2

PowerPoint
UML class diagrams, the process of developing class diagrams, presentations,
implementing class diagrams in Java examples, questions,
Using Design Patterns (Abstraction-Occurrence, Composite,

2
discussion

Observer, Delegation, Adapter, Façade, Proxy, etc)

Modeling software behavior: UML interaction diagrams (sequence
2

and communication diagrams), UML state diagrams

Architecting and designing software: design principles (increase
2

cohesion, reduce coupling), architectural patterns (Multi-Layer, Pipe-

and-Filter, etc.)
Testing and inspecting to ensure high quality: testing techniques

2

(equivalence partitioning, path testing), integration testing strategies

(top-down, bottom-up, scenario-based), inspections
Use case driven development: use case specifications, analysis,

2

design and implementation to realize the use cases, testing the use

cases
Program specification and verification: well-founded induction, pre-

2

and post-conditions, declarative prototyping

3/4

Software Engineering is a well-established discipline in Computer Science and Information Technology. In this course,
students acquire basic knowledge related to software development (paradigms, methods and tools) and learn to apply
systematic and quantifiable approaches in the development of software systems. Course content has been developed
based on interaction with specialists in Software Engineering from Romania, Europe (UK, Greece), US and Canada and
has been rated by Romanian government agencies (CNEAA and ARACIS).

and Java (2nd edition), McGraw-Hill, 2005. http://www.lloseng.com.

3. A. Fox, D. Patterson, Engineering Software as a Service: An Agile Approach Using Cloud Computing (1st and 2nd
editions), Strawberry Canyon (2013, 2021).

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

5. E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem, editors, Handbook of Model Checking, Springer, 2018.
6. M. Odersky, L. Spoon, B. Venners, Programming in Scala, (3rd, 4th editions), Artima (2016, 2020).
7. E.N. Todoran. Inginerie software: studii in prototipizare si specificare formala. Mediamira, Cluj-Napoca, 2006.
8.2 Applications – Laboratory Hours Teaching methods Notes
OCSF – an object client-server framework for reuse oriented
development 2

Simple Chat - an instant messaging system based on OCSF (1) 2

Simple Chat - an instant messaging system based on OCSF (2) 2

Using software modeling CASE tools: UML use case, class,
interaction, state, component and deployment diagrams 2

Using CASE tools for software performance modeling and analysis:
PRISM model checker 2

Using Design Patterns 2

Test cases design, using Junit 2

The project class attempts to simulate various aspects of the real
world of software engineering. The students define the problem to
be solved and the scope of the project under the supervision of the
teaching assistant. Working alone is permitted, but they are
encouraged to work in teams. The students employ the paradigms
and the software development methods that are presented in the
taught course, e.g., following the SaaS (Software as a Service) model.
They are expected to deliver three iterations of the project with
predefined deadlines. For a traditional ‘waterfall’ project the
deadlines correspond to requirements specification, design, and the
final deliverable. The project will be delivered in week 13.

14

Bibliography
1. T. Lethbridge, R. Laganiere. Object-Oriented Software Engineering: Practical Software Development using

UML and Java (2nd edition). McGraw-Hill, 2005. http://www.lloseng.com.
2. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1994.
3. PRISM manual, 2023. http://www.prismmodelchecker.org/manual/

*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

10. Evaluation

Activity type Assessment criteria Assessment methods Weight in the
final grade

Course Problem solving skills Written exam 75%
Seminar -

Laboratory Software design and validation skills Laboratory colloquium, 5%

Bibliography
1. I. Sommerville. Software Engineering (6th, 7th, 8th, 9th, 10th editions), Addison Wesley (2001, 2004, 2006, 2010,

2016).
2. T. Lethbridge, R. Laganiere. Object-Oriented Software Engineering: Practical Software Development using UML

http://www.lloseng.com/
http://www.lloseng.com/
http://www.prismmodelchecker.org/manual/

4/4

Project Project assessment 20%
Minimum standard of performance:
Development of a medium size software project using the skills taught in the Software Engineering course.
Grade calculus: 5% laboratory + 20% project + 35% final exam

Date of filling in:
12.06.2023

Teachers Title First name Last name Signature

Course Prof. dr. eng. Eneia Todoran

Applications

Assoc. prof. dr. Paulina Mitrea

Assoc. prof. dr. eng. Delia Mitrea

Date of approval in the department Head of department,

Prof. dr. eng. Rodica Potolea

Date of approval in the Faculty Council
Dean,
Prof. dr. eng. Liviu Miclea

Conditions for participating in the final exam: Laboratory ≥ 5, Project ≥ 5
Conditions for promotion: grade ≥ 5

