SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	31.

2. Data about the subject

2.1 Subject name				Structure of Computer Systems			
2.2 Course responsible / le	ecture	er	Prof. dr. eng. Gheorghe Sebestyen - Gheorghe.Sebestyen@		Prof. dr. eng. Gheorghe Sebestyen - <u>Gheorghe.Sebestyen@cs.utcluj.ro</u>		
2.3 Teachers in charge of laboratory / project	semir	nars /	Assoc. prof. dr. eng. Anca Hângan - <u>anca.hangan@cs.utcluj.ro</u> Lect. dr. eng. Mădălin Neagu - <u>madalin.neagu@cs.utcluj.ro</u> Eng. Tudor Coroian - Tudor.Coroian@cs.utcluj.ro		Lect. dr. eng. Mădălin Neagu - madalin.neagu@cs.utcluj.ro		
2.4 Year of study	III	2.5 Sem	nester	ester 5 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е	
2.76 1:	DF -	fundam	entală, DD – în domeniu, DS – de specialitate, DC – complementară			DD	
2.7 Subject category	DI-	Impusă, DOp – opțională, DFac – facultativă		DI			

3. Estimated total time

3.1 Number of hours per week	5	of which	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which	Course	28	Seminars		Laboratory	28	Project	14
3.3 Individual study:										
(a) Manual, lecture materia	l and n	otes, biblio	graphy							20
(b) Supplementary study in the library, online and in the field							17			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						15				
(d) Tutoring							0			
(e) Exams and tests							3			
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 55										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Digital system design, Computer architecture
4.2 Competence	Understand and operate with basic concepts regarding computer system's hardware

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competence

6.1 Professional competences	C2 – Designing hardware, software and communication components (5
	credits)
	C2.1 – Describing the structure and functioning of computational,
	communication and software components and systems
	C2.2 – Explaining the role, interaction and functioning of hardware, software
	and communication components

	C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 – Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	The main goal of the course is to present in an accessible way advanced design methods and techniques used in today's microprocessors and computer systems
7.2 Specific objectives	To study: Methods and metrics for computer performance assessment Advanced CPU designs (pipelining, multicore, parallele and distributed computing) Memory hierarchies: cache memory, virtual memory, new DRAM technologies RISC architecture Parallel computers architectures – hardware issues and solutions

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Computer Performance Parameters and Methods of Improvement	2		
Computer performance and optimality, Benchmarking	2		
The Arithmetical and Logical Unit (ALU)	2		
The Central Processing Unit (CPU) – MIPS architecture, pipeline, hazard cases	2		
The Central Processing Unit – advance techniques: Scoreboard method, Tomasulo's algorithm, Branch prediction techniques	2	Lecture based on	
The Central Processing Unit – multi-core systems	2	slides, onsite	
Microprocessors – basic components and advanced implementations	2		
Memory System – memory technologies (SRAM, DRAM) and design principles	2		
Memory Hierarchies – cache and virtual memory	2		
Interconnection Systems – serial and parallel synchronous and asynchronous buses, multipoint interconnections	2		
Parallel Computer Architectures - different levels of parallel execution	2		
RISC Architectures – principles and implementation examples	2		
Distributed Computing – GRID and Cloud Systems	2		
Technological Perspectives in Computer Architectures	2		
Pibliography	•	•	•

Bibliography

- 1. Gorgan Dorian, Sebestyen Gheorghe, Structura Calculatoarelor, Editura albastra, Cluj-Napoca 2005
- 2. Hennessy John, Patterson David, Computer architecture, a Quantitative Approach, Ed. Elsevier, 2007
- 3. Baruch, Z. F., Structure of Computer Systems, U.T.PRES, Cluj-Napoca, 2002, ISBN 973-8335-44-2.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Measuring the performance of computer systems with benchmarks	2	Practical designs,	
CPU performance monitoring using the Time-Stamp Counter register	2	experiments and results assessment,	
Programming elements in VHDL	2	onsite	
Design of ALU components	2		
FPGA Synthesis	2		

Introduction to using PicoBlaze microcontroller with the Nexys3 board	2	
Implementation of a MIPS processor in VHDL - 1	2	
Implementation of a MIPS processor in VHDL - 2	2	
Implementation of a pipelined MIPS processor in VHDL	2	
Memory design - 1	2	
Memory design - 2	2	
Advanced Hardware Design Techniques	2	
Design implementations on NEXYS 3 board	2	
Laboratory Colloquy	2	
Topics for Project Assignments: Implementation of arithmetic		
circuits; Design and implementation of processors and		
controllers; Signal Processing; Hardware implementation of DSP		
and image processing algorithms; Design of I/O interfaces.		
Bibliography		
Laboratory works at http://users.utcluj.ro/~ancapop/scs.html		

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in t

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical knowledge level	Written exam, onsite	60%
Seminar	-		
Laboratory			20 %
Project	Hardware Design skills	Practical evaluation, onsite	20 %

Minimum standard of performance:

Minimum 5 for the Course and for the Application assessment

Grade calculus: 60% written exam + 20% laboratory evaluation + 20% project evaluation

Conditions for participating in the final exam: Laboratory ≥ 5, Project ≥ 5

Conditions for promotion: final grade ≥ 5

Date of filling in: 07.06.2023	Teachers	Title First name Last name	Signature
	Course	Prof. dr. eng. Gheorghe Sebestyen	
	Applications	Assoc. prof. dr. eng. Anca Hângan	
		Lect. dr. eng. Mădălin Neagu	
		Eng. Tudor Coroian	

Date of approval in the department	Head of department, Prof. dr. eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof. dr. eng. Liviu Miclea