SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca			
1.2	Faculty	Electronics, Telecommunications and Information Technology			
1.3	Department	Mathematics			
1.4	Field of study	Electronics, TelecommunicatioElectronic Engineering,			
		Telecommunications and Information Technologiesns			
1.5	Cycle of study	Bachelor of Science			
1.6	Program of study / Qualification	Electronics, Telecommunications / Engineer			
1.7	Form of education	Full time			
1.8	Subject code	2.00			

2. Data about the subject

2.1	2.1 Subject name					Linear Algebra					
2.1	+										
2.2	2 Subject area				Math	nematics					
2.3	Course responsible / lecturer			Prof. dr. Radu Peter- <u>radu.peter@math.utcluj.ro</u>							
2.4	_ , ,					- <u>radu.peter@n</u> os - Liana.Timbo					
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	Written /online exam	2.8	Subject category	DF/OB

3. Estimated total time

Sem.	Subject name	Lecture	App	licati	ions	Lecture	App	licati	ons	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	Г	Р		S	L	Р			
1	Linear Algebra	2	2	-	-	28	28	-	-	48	104	4

	_				,			
3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	104	3.5	of which, course	28	3.6	applications	28
Individual study							Hours	
Manual, lecture material and notes, bibliography							20	
Supplementary study in the library, online and in the field							4	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								21
Tutoring							0	
Exams and tests							3	
Othe	er activities							0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2	Competence	Competences in elementary Linear Algebra and Analytic Geometry: matrices,
		determinants, linear systems, vectors and lines in plane

5. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector
5.2	For the applications	Blackboard, video projector

6. Specific competences

_ s	C1.1. Professional communication using scientific concepts, theory and methods used in system engineering. C1.2. Presentation and motivation of solution to problems from system engineering using techniques, concepts
ona	and principles from mathematics, physics, etc.
Professional competences	C1.3. solving usual problems in system engineering by identifying techniques, principles and methods from
ofe up	mathematics.
F S	C1.4. Identifying the potential, advantages and disadvantages of methods from system engineering,
	documentation of projects and using mathematical methods.
	C1.5.Use of mathematical methods in projects in system engineering.
es	N/A
Cross	
Cross	
1 0 4	
8	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	A presentation of the concepts, notions, methods and fundamental					
		techniques used in linear algebra and analytic geometry.					
7.2	Specific objectives	Use of the matrix calculus (in the general context of linear algebra) in order					
		to solve problems in engineering.					
		Use of the vectorial calculus (in the general context of analytic geometry) in					
		modelling and solving practical problems concerning spatial forms.					

8. Contents

8.1. Le	cture (syllabus)	Teaching methods	Notes
1	Vectors in plane and space.	Explanation	
2	Lines and planes.		
3	Vectror spaces: defintion, examles, subsaces, sums of subspaces.	Demonstration	
4	Basis and dimensions. Linar indpendence. Change of basis.		
5	Inner product spaces (I): definition, examples, computations, orthonormal basis,	Collaboration	
	Schwarz inequalty, orthogonal complement.		
6	Inner product spaces (II): Gram-Schmidt ortogonalization process, Gram	Interactive	
	deteminants. Linear manifolds, distances.	activities	
7	Linear maps (I): definition, kernel, image, injective and surjective maps.		
8	Linear maps (II): the matrix of a linear map.		
9	Eigenvectors and eigenvalues of operators (and associated matrix).		
	Characteristic polynomial. Cayley-Hamilton thoerem. Diagonal form.		
	Diagonaziabel operators.		
10	The Jordan canonical form for operators (and associated matrix). Jordan basis,		
	the Jordan matrix.		
10	Functions of a matrix. The n-th power of a matrix. Elementary functions of a		
	matrix.		
11	The adjoint operator. Definition, properties, examples.		
12	Special operators, Properties of eigenvalues and eigenvectors.		
13	Bilinear forms, quadratic forms. The associated matrix.		
14	Conics and quadrics. Reduction to a canonical form. Geometric properties.		

Bibliography

- 1. Ioan Radu Peter, Szilard Laszlo, Adrian Viorel , Elements of Linear Algebra, Mediamira 2014, https://algappl.utcluj.ro/
- 2. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 3. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005

8.2. <i>A</i>	Applications (Seminars)	Teaching methods	Notes
1	Linear systems, matrices, determinants.	Explanation	
2	Vectorial geometry. Determinants. Exercises.		
3	Problems in analytical geometry: lines and planes. Applications.	Demonstration	
4	Linear spaces, basis, dimension, direct sums.		

5	Linear indpenedence, basis, dimensions.	Collaboration	
6	Inner product spaces (I): definition, examples, computations, orthonormal basis,		
	Schwarz inequalty, orthogonal complement.	Interactive	
7	Inner product spaces (II): Gram-Schmidt ortogonalization process, Gram	activities	
	deteminants. Linear manifolds, distances.		
8	Linear maps (I): definition, kernel, image, injective and surjective maps.		
9	Linear maps (II): the matrix of a linear map. Applications.		
10	Eigenvalues and eivectors. Diagonalizable linear maps.		
11	Jordan canonical form I. Applications.		
12	Jordan canonical form II, Jordan basis. Special operators.		
13	Bilinear forms, quadratic forms. Applications.		
14	Conics and quadrics, reduction to a canonical form. Recapitulative problems.		

Bibliography

- 1. Ioan Radu Peter, Szilard Laszlo, Adrian Viorel , Elements of Linear Algebra, Mediamira 2014, https://algappl.utcluj.ro/
- 2. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 3. V. Pop, I. Corovei, Algebra pentru ingineri. Culegere de probleme, Ed. Mediamira, 2003.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Fyaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Abilities of understanding and using creatively the concepts and proofs		Written examination		20%
Applications		Abilities of solving problems and applying algorithms		Written examination		80%

10.4. Minimum standard of performance

Ability to present coherently a theoretical subject and to solve problems with practical content.

Date of filling in	Responsible Ttilre, Name, Surname		Signature
28.04.2023	Course	Prof. dr. Ioan Radu Peter	
	Applications	Prof. Dr. Ioan Radu Peter	
		Lect. Liana Timbos	

Date of approval in the department council	Head of M

Head of Mathematics Departament,

Prof. dr. Dorian Popa

Date of approval in the Faculty council of Automation and Computer

Dean,

Prof. dr. eng. Liviu Miclea

Science