SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / qualification	Computer Science / Engineer
1.7 Form of education	Full time
1.8 Subject code	24.0

2. Data about the subject

2.1 Subject name Numerical Methods				Numerical Methods			
2.2 Course responsible / lecturer			r		Prof. dr. Dumitru-Mircea Ivan - mircea.ivan@math.utcluj.ro		
2.3 Teachers in charge of applications			ations		Prof. dr. Daniela Rosca - daniela.rosca@math.utcluj.ro		
2.4 Year of Study	.4 Year of Study II 2.5 Semester 4		4	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E		
	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară						
2.7 Subject category	DI –	DI – Impusă, DOp – opțională, DFac – facultativă					

3. Estimated total time

Sem.	Subject name	Lecture	Арј	olica	tions	Lecture	Арр	licati	ons	_	ridual ıdy	TOTAL	Credit
		[hou	rs / v	weel	c.]	[hours	s / se	mes	ter]			
			S	L	Р		S	L	Р				
3	Numerical Methods	2	-	2	-	28	-	28	-	4	4	100	4
3.1	Number of hours per week	4	3	.2	lectur	es			2	3.3	арр	lications	2
3.4	Total hours in the teaching plan	128	3	.5 I	lectur	es			28	3.6	арр	lications	28
Individual study													
Manual, lecture material and notes, bibliography							20						
Supplementary study in the library, online and in the field							4						
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						15							
Tutoring							0						
Exams and tests							5						
Other activities							0						
27 7 11 6: 1: 1 1 1													

3.7	Total hours of individual study	44
3.8	Total hours per semester	100
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Differential and Integral Calculus
4.2	Competence	Competences in Elementary Differential and Integral Calculus: derivatives, integrals, series.

5. Requirements (where appropriate)

	······································						
5.1	For the course	-					
5.2	For the applications	-					

6. Specific competences

Professional competences	C1 – Operating with basic Mathematical, Engineering, and Computer Science concepts (5 credits) C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	N/A

7. Discipline objectives (as results from the key competencies gained)

7.	General objective	A presentation of the concepts, notions, methods, and fundamental techniques used in Numerical methods.
7.	2 Specific objectives	Use of numerical algorithms in order to solve problems in engineering.

8. Contents

8.1. Le	ecture (syllabus)	Teaching methods	Notes
1	Elements of Error Theory. Floating Point Arithmetic. Absolute and Relative Errors.	Explanation	2 hrs
2-3	Numerical Methods in Linear Algebra. Special Types of Matrices. Norms of Vectors and Matrices. Eigenvalues and Eigenvectors. Error Estimation.	Demonstration	4 hrs
	Matrix Equations. Pivoting Elimination. Improved Solutions of Matrix Equations. Partitioning Methods for Matrix Inversion. LU Factorization. Doolittle's	Collaboration	
	Factorization. Choleski's Factorization Method. Iterative Techniques for Solving Linear Systems. Jacobi Iterative Method. Gauss-Seidel Iterative Method.	Interactive activities	
	Relaxation Methods. Characteristic Polynomial: Leverrier Method. Characteristic Polynomial: Fadeev-Frame Method.		
4-5	Solutions of Nonlinear Equations. Method of Successive Approximation. The Bisection Method. The Newton-Raphson Method. The Secant Method. False Position Method. The Chebyshev Method. Numerical Solutions of Nonlinear Systems of Equations. Newton's Method for Systems of Nonlinear Equations. Steepest Descent Method.		4 hrs
6-8	Elements of Interpolation Theory. Lagrange Interpolation. Divided Difference. Mean Value Properties in Lagrange Interpolation. Approximation by Interpolation. Hermite Interpolating Polynomial. Finite Differences. Interpolation of Multivariable Functions. Scattered Data Interpolation. Shepard's Method. Splines. B-splines.		6 hrs
9- 10	Elements of Numerical Integration. Richardson's Extrapolation. Numerical Quadrature. Error Bounds in the Quadrature Methods. Trapezoidal Rule. Richardson's Deferred Approach to the Limit. Romberg Integration. Newton-Cotes Formulas. Simpson's Rule. Gaussian Quadrature.		4 hrs
11- 12	Elements of Approximation Theory. Discrete Least Squares Approximation. Orthogonal Polynomials and Least Squares Approximation. Rational Function Approximation. Padé Approximation. Trigonometric Polynomial Approximation. Fast Fourier Transform. Bernstein Polynomial. Bézier Curves. METAFONT.		4 hrs
13- 14	Integration of Ordinary/Partial Differential Equations. The Euler Method. The Taylor Series Method. The Runge-Kutta Method. The Runge-Kutta Method for Systems of Equations. Integration of Partial Differential Equations Parabolic Partial-Differential Equations. Hyperbolic Partial Differential Equations. Elliptic Partial Differential Equations.		4 hrs

Bibliography

- 1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 2. Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishing House, Cluj-Napoca, 1992.
- 3. Ioan Gavrea & Mircea Ivan, ML. Numerical Methods, POSDRU/86/1.2/S/62485, 2013

	-, , -,	
8.2. Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes

1	The applications follow the topics of the courses.	Explanation	
		Demonstration	
		Collaboration	28 hrs
		Interactive	
		activities	
Biblio	ography:		•
	L. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Median	nira, Clui-Napoca, 20	03. ISBN

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

973-9357-41-5.

Activity type	Assessment criteria	Assessment methods	Weight in the final grade				
Course	Ability to understand and use the concepts and proofs creatively	Written examination	40%				
Applications	Ability to solve problems and apply algorithms	Written examination	60%				
Minimum standard of performance:							
Ability to present a theoretical subject coherently and to solve problems with practical content.							

Date of filling in: 06.06.2023	Teachers	Title First name Last name	Signature
	Lectures	Prof. Mircea Ivan	
	Applications	Prof. Daniela Rosca	

Date of approval by the Department Board 08.06.2023	Head of Department of Mathematics, Prof. PhD. Dorian Popa
Date of approval by the Faculty Council	Dean, Prof. PhD. eng. Liviu Miclea