SYLLABUS

1. Data about the program of study

1.1	1.1 Institution The Technical University of Cluj-Napoca			
1.2	1.2 Faculty Automation and Computer Science			
1.3	Department	Computer Science		
1.4	Field of study	Computer Science and Information Technology		
1.5 Cycle of study Bachelor of Science				
1.6	Program of Study/Qualification	Computer Science / Engineer		
1.7	Form of education	Full time		
1.8	Subject code	1.00		

2. Data about the subject

2.1	Subject name				Mathematical Analysis I (Differential calculus)		
2.2	Course responsible/lecturer				Prof. dr. Dumitru-Mircea Ivan - Mircea.Ivan@math.utcluj.ro		
2.3	Teachers in char	chers in charge of applications			Prof. dr. Dumitru-Mircea Ivan - Mircea.Ivan@math.utcluj.ro		
2.4	Year of Study 2.5 Semester 1		1	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E		
DF – fundamentală, DD – îr			– fundamentală,	DD –	în domeniu, DS – de specialitate, DC – complementară	DF/DOB	
2.7 Subject category DI – Impusă, DOp – opțională, DFac – facultativă							

3. Estimated total time

3.1	Number of hours per week	4	3.2	lectures	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	lectures	28	3.6	applications	28
Individual study								
Manual, lecture material and notes, bibliography						28		
Supplementary study in the library, online, and in the field						4		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						8		
Tutoring						2		
Exams and tests							2	
Othe	er activities							0

3.7	Total hours of individual study	44
3.8	Total hours per semester	100
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Differential Calculus and Set Theory
4.2	Competence	Competences in elementary Differential Calculus: elements of set theory,
		limits, sequences and series, derivatives.

5. Requirements (where appropriate)

5.1	For the lectures	
5.2	For the applications	

6. Specific competences

or opcome competences	
6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering, and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objectives (as results from the key competencies gained)

7.1	General objective	A presentation of the concepts, notions, methods, and fundamenta techniques used in differential calculus.			
7.2	Specific objectives	Use of differential calculus to solve problems in engineering. Use of differential calculus in modelling and solving practical problems concerning spatial forms.			

8. Contents

8.1. Lect	rure (syllabus)	Teaching methods	Notes
1	Elements of Set Theory. Set operations. Functions. Cardinal numbers.	Explanation	
	General Topology. Topologies and topological spaces. Open and closed sets.		
2	Neighborhoods. Interior and closure of a set. Limit points.	Demonstration	
3	Metric. Topology of a metric space. Sequences in metric spaces.		
4	Sequences of Numbers. Stolz-Cesaro criterion.	Collaboration	
5	Series of Numbers. Convergence tests for series. Infinite products.		
6	Continuity. Continuous mappings on topological, metric, and Euclidean spaces.	Interactive	
	Differential Calculus for Functions of One Variable. Mean-value theorems.	activities	
7	Taylor's formula for real functions of one variable. The differential of functions		
	of one variable.		
	Differential Calculus for Functions of Several Variables. Partial derivatives.		
	Derivative of composite functions. Homogeneous functions. Euler's identity.		
8-10	Gradient. Directional derivative. Lagrange's mean value theorem. The		
	differential of functions of several variables. Taylor's formula for functions of		
	several variables.		
11-12	Functional Sequences and Series. Power series. Trigonometric and Fourier		
	series.		
13	Implicit Functions. Existence theorems for implicit functions. Change of		
	coordinates and variables.		
14	Extrema of Functions. Unconditional and conditional extrema.	1	
Bibliogra	pphy	•	•
1.	Mircea Ivan. Elemente de calcul integral. Mediamira, Cluj-Napoca, 2003.		
2.	Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002.		

	=						
8.2. Ap	plications (Seminars)	Teaching methods	Notes				
1	Exercises related to: set operations, functions, and cardinal numbers.						
2	Exercises related to topologies, open and closed sets, neighborhoods, interior, and closure of a set.	Explanation					
3	Example of metrics with application in engineering.	Demonstration					
4	Exercises related to sequences of numbers.	Collaboration					
5	5 Exercises concerning convergence tests for series.						
6	Exercises related to continuous mappings.	Interactive activities					
7	Exercises concerning mean-value theorems and Taylor's formula for real	detivities					

	functions of one variable.
8-10	Exercises related to partial derivatives, derivative of composite functions, gradient, directional derivative, differential of functions of several variables, and Taylor's formula for functions of several variables.
11-12	Exercises related to Power and Fourier series.
13	Exercises related to implicit functions, change of coordinates, and variables.
14	Exercises concerning unconditional and conditional extrema.

Bibliography:

- 1. Dumitru Mircea Ivan, Calculus, 2002, Editura Mediamira, Cluj-Napoca
- 2. Dumitru Mircea Ivan, et al. Analiză matematică Culegere de probleme pentru seminarii, examene şi concursuri. Editura Mediamira, Cluj-Napoca, 2002.
- 3. Mircea Ivan et al. Culegere de Probleme Pentru Seminarii, Examene şi Concursuri. UT Press, Cluj-Napoca, 2000.

9. Bridging course contents with the expectations of the representatives of the community, professional associations, and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Lectures		Ability to understand and use the concepts and proofs creatively		Written examination		40%	
Applications		Ability to solve problems and apply algorithms		Written examination		60%	
10.4 Minimum standard of performance							
Ability to prese	Ability to present a theoretical subject coherently and to solve problems with practical content.						

Date of filling in: 06.06.2023	Teachers	Title First name Last Name	Signature
	Course	Prof. dr. Dumitru-Mircea Ivan	
	Applications	Prof. dr. Dumitru-Mircea Ivan	

Date of approval in the department	Head of Department of Mathematics,	
08.06.2023	Prof. PhD. Dorian Popa	
Date of approval by the Faculty Council	Dean, Prof. PhD. eng. Liviu Miclea	