Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Computer science / Engineer
1.7 Form of education	Full time
1.8 Subject code	103.00

2. Data about the subject

2.1 Subject name			Basics of Quantum Information			
2.2 Course responsible / lecturer		CS1 dr. Liviu Zarbo - liviu.zarbo@itim-cj.ro				
2.3 Teachers in charge of a	ers in charge of applications		CS Levente Mathe - levente.mathe@itim-cj.ro AC Larisa Pioras-Timbolmas - larisa.timbolmas@itim-cj.ro			
2.4 Year of study	Ш	2.5 Sem	mester 1 2.6 Assessment (E/C/V)			Е
2.7 Type of subject		tal, DD -	tal, DD – in the field, DS – specialty, DC – complementary			
		compulsor	y, DO – 6	electiv	ve, Dfac – optional	DFac

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminar		Laboratory	1	Project	
3.2 Number of hours per semester	42	of which:	course	28	Seminar		Laboratory	14	Project	
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblio	graphy							10
(b) Supplementary study in the library, online and in the field						10				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring							0			
(e) Exams and tests							3			
(f) Other activities:						0				
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 33										
3.5 Total hours per semester (3.2+3.4) 75										

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Linear Algebra
	Mathematical Analysis
	Physics
	Programming
4.2 Competence	

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competences

6.1 Professional competences	Basic high-school level or first year undergraduate physics: mechanics,
	electricity and magnetism, optics
	Basic knowledge of linear algebra and calculus, first year undergraduate
	student level
	Basic programming knowledge, first year undergraduate student level
6.2 Cross competences	

7. Course objectives

7.1 General objective	Developing general knowledge relevant to applications in the field of quantum computation and quantum communications
7.2 Specific objectives	 Assimilating the basics of quantum computation: qubits, quantum gates, quantum circuits, quantum algorithms Developing the basic skills for developing quantum algorithms Understanding the basics of quantum communications protocols.

8. Contents

		8. Contents					
8.1 Curs	Nr.ore	Teaching methods	Notes				
1. Introductory notions.							
 From classical to quantum computing 							
 The dual behavior of the quantum objects 	2						
 Tunneling 							
 Double slit experiment 							
2. Quantum states							
 Notations 							
 Probabilities 	2						
 Matrix and vector representation of quantum states 	2						
 Qubits 							
 Pure states and mixed states 							
3. Observables and quantum measurement 1							
Observables and operators							
The Heisenberg principle	2						
Projective measurements							
The Stern-Gerlach experiment							
4. Observables and quantum measurement 2	1						
Quantum state vectors.							
 Observables and operators, the density matrix. 	2						
 Probabilities and expectation values. 							
Partial measurements							
5. Qubits	+	Blackboard, video-					
The two-level system and real life examples		lectures, discussions					
Quantum gates	2	of examples, problem					
Superpositions and entanglement of qubits	_	solving					
The Bloch sphere.		0					
6. Qubit control							
Larmor precession.							
Rabi oscillations	2						
Functioning of quantum gates.							
7. Quantum measurement and applications 1.	1	†					
The no-cloning theorem							
Quantum teleportation	2						
Quantum sensing							
Quantum sensing Quantum tomography							
8. Quantum measurement and applications 2.	1	†					
Quantum random number generation	2						
Quantum random number generation Quantum communication protocols (BB84).							
9. Quantum Communication 9. Quantum Communication	+	-					
Quantum communication Quantum cryptography notions	2						
 Quantum cryptography notions Quantum communication networks. 							
10. Quantum computation and simulations	+	-					
digital and analog quantum computers.	2						
	-						
	Quantum simulations – concepts/applications.						
11. Quantum circuits and algorithms	2						
The Uranium platform							

Using online quantum computing resources (e.g. IBMQ)		
12. Quantum algorithms 1.		
 Deutsch-Josza algorithm. 	2	
Grover algorithm		
13. Quantum algorithms 2.		
 Quantum Fourier transform 	2	
 RSA and Shor's algorithm 		
14. Physical platforms for quantum computing		
 Superconducting qubits 	2	
 Cold atoms 	2	
 Ion traps 		

Bibliography

- 1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
1. Visualising qubit operations: Bloch sphere, single qubit gates, destructive and constructive interference (Quantum Odyssey)	2		
2. Quantum circuits in Q. Odyssey: vectors, eigenvalues, basis change	2	Lab work in INCOTINA	
3. Generating entanglement in quantum circuits (quantum gates: CNOT, SWAP, Toffoli). Visualisation in Q. Odyssey, circuits on the Uranium platform.	2	Lab work in INCDTIM Quantum Software lab, using tools such	
4. Time evolution of qubits and their observables: visualization in Python	2	as Uranium, Quantum Oddyssey, Google Colab.	
5. Uranium platform: multiqubit quantum circuits and quantum measurements; Deutsch algorithm	2	GOOGIE COIAD.	
6. Quantum oracles, Grover's algorithm (Uranium, Q. Odyssey)	2		
7. The Quantum Fourier Transform	2		

Bibliography

- 1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Solving 2 problems + 1 theory set of questions	Written exam	60%			
Seminar						
Laboratory		Periodic lab quizzes	40%			
Project						
Minimum standard of performance:						

Date of filling in:	Teachers	Title Firstname NAME	Signature
28.06.2023	Course	Dr. Liviu Zarbo	
	Aplications	Levente Mathe	
		Larisa Pioras-Timbolmas	

Date of approval in the department	Head of Departament, Prof. dr. eng. Rodica Potolea
Date of approval in the Faculty Council	Dean, Prof. dr. eng. Liviu Miclea