Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	56.40

2. Data about the subject

2.1 Subject name	Digit			al Graphics			
2.2 Course responsible/lecturer		Lecturer Eng. Iulia Adina ŞTEFAN, PhD					
2.3 Teachers in charge of applications		Eng. Nicolae Viorel COSTEA					
2.4 Year of study	4	2.5 Semest	er 2 2.6 Assessment (E/C/V)			С	
DF – fundamental, DD			, DD ·	– in th	ne field, DS – specialty, DC – complementary	DS	
2.7 Type of subject	DI – c	DI – compulsory, DO – elective, Dfac – optional			DO		

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminar	Laboratory	Project	1
3.2 Number of hours per semester	125	of which:	course	28	Seminar	Laboratory	Project	14
3.3 Individual study								
(a) Manual, lecture material	and no	tes, biblio	graphy					30
(b) Supplementary study in the library, online and in the field						20		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						30		
(d) Tutoring						1		
(e) Exams and tests						1		
(f) Other activities:						1		
			(6)))					

3.4 Total hours of individual study (sum of (3.3(a)3.3(f)))	83
3.5 Total hours per semester (3.2+3.4)	208
3.6 Number of credit points	5.0

4. Pre-requisites (where appropriate)

	,
4.1 Curriculum	Algebra, Calculus, CAD in automation
	OOP knowledge in a high-level programming language as C++, C#, java or
	similar
4.2 Competence	C1.1
	Using the concepts, theories and methods of the fundamental sciences in
	systems engineering for professional communication

5. Requirements (where appropriate)

5.1. For the course	A minimum 60 sits room, PC and video projector, whiteboard/blackboard/smart board, flipchart, markers, a room to comply the regulation related to the pandemic restrictions, if needed
5.2. For the applications	A minimum 20 sits lab room, 17 PC's, video projector, whiteboard/blackboard/smart board, flipchart, markers, a room to comply the regulation related to the pandemic restrictions, if needed

6. Specific competences

6.1 Professional competences	C1 Operating with basic concepts of mathematics, physics, measurement
	science, mechanical, chemical, electrical engineering in systems engineering
	field.

	C2 Operating with basic concepts of computer science, information technology and communication C3 Operating with fundamentals of control engineering, process modelling, simulation, identification and analysis methods, and computer aided design. C4 Design, implementation, testing, operation and maintenance of systems with generic and dedicated equipment, including computer networks for control engineering and applied informatics
6.2 Cross competences	Identifying the roles and the responsibilities in a multicompetent team, taking decisions and delegating tasks by applying professional networking techniques and effective teamwork techniques. D1: Project management D2: Practical placement D3: Sport D4: Foreign languages D5: Research and development activity

7. Course objectives

7. Course objectives				
7.1 General objective	The specific concepts, theory and scientific fundamentals methods usage in digital graphics, defined in the technological context of a continuous development of the virtual or/and online environments, both, the human and applications participants			
7.2 Specific objectives	At the end of the lecture, the students are able to recognize, identify and apply: • specific parameters, functions, libraries and frameworks for OpenGL applications development: OpneGL, WebGL, VR&AR • fundamental algorithms for digital processing • real time rendering, • animations • loT based solutions identification using graphical processing and libraries.			

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction toward the applications domains	2		
Virtual reality and equipment. Designated platforms for AR and VR application development. Presentation of rResources and requirements for the projects	3		Depending
Intro: OpenGL ES, Vulkan, OpenGL, WebGL. OpenGL pipeline, GLSL Language, Shader programs usage	2	Interactive lectures, brainstorming,	on general health
Polygons – Clipping. Surfaces	2	discovery learning,	context, the lectures will
Textures and texturing: definitions, specific parameters and functions. Multiple texturing. Procedural Textures. Filters. Teoretical aspects: 2D (linear) transformations. 3D (cubical) transformations. Coordinate Systems	6	cooperative learning, reasoning, learning in pairs, debates, video / or online on Teams platform	take place online, on Teams platform.
Light sources/Shadowing	3	reams piationii	piatioiii.
VR concepts. Frameworks, examples, and other resources.	6		
Graphical components in web pages (XML, SVG, Flash, WebGL)	4		

Bibliography

- 1. Mark Segal, Kurt Akeley, The OpenGL R Graphics System: A Specification, Version 4.6, Core Profile, May 14, 2018
- 2. Farhad Ghayour and Diego Cantor, Real-Time 3D Graphics with WebGl2, Packt Publishing, 2018
- 3. Hussain Frahaan, Learn OpenGL, Packt Publishing, 2018
- 4. David Wolff, OpenGL 4 Shading Language cookbook, third Edition, Pack Publising, 2018
- 5. Graham Sellers, Richard S. Wright, Nicholas Haemel, OpenGL SuperBible Seventh Edition Comprehensive Tutorial and Reference, Ed. Addison-Wesley, 2016, ISBN-13: 978-0672337475

- 6. D. Salomon, The Computer Graphics Manual, Springer, 2011, ISBN 9780857298850
- 7. Samuel R. Buss, 3D Computer Graphics A Mathematical Introduction with OpenGL, ISBN: 9780521821032, 2003
- 8. Erin Pangilinan & all, Creating Augumented and Virtusal Realities, O'Reilly, 2019
- 9. P. Shirley, S. Marschner, Fundamentals of Computer Graphics 3rd ed., 2009
- 10. Tomas Akenine-Moller Eric Haines, Naty Hoffman, Real-Time Rendering, Third Edition, ISBN-13: 978-1568814247, 2008,
- 11. Peter Shirley Michael Ashikhmin, Steve Marschner ,Fundamentals of Computer Graphics, 2009, ISBN-13: 978-1568814698
- 12. Alan Watt, 3D Computer Graphics (3rd Edition), ISBN-13: 978-0201398557, 1999,
- 13. https://www.khronos.org/registry/webgl/specs/latest/2.0/
- 14. http://www.w3.org/TR/2011/REC-SVG11-20110816/
- 15. WebGL Docs, https://registry.khronos.org/webgl/specs/latest/2.0/, ultima actualizare 6 august 2022
- 16. ThreeJS Docs, https://threejs.org/docs/, ultima accesare: septembrie 2022
- 17. Unity Manual, https://docs.unity3d.com/Manual/index.html, ultima accesare: septembrie 2022
- 18. Unity VR Documentation, https://learn.unity.com/course/create-with-vr, ultima actualizare 16 iunie 2022.

8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Equipment and VR&AR usage. Ar Example	1		
Motion sensors and the graphical transposition of motion			
based on the information taken from the sensors. Introducing	1		
an IoT basic application			Depending
Unity. Basic example VR	1		on general
Teams definitions.		Case study, directed	health
Projects/homework presentations: functional requirements,	1	learning , learning	context, the
architecture definition		through discovery,	lectures will
Assets definition (e.g.: Blender or other framework or game	2	learning directed ,	take place
engine)	2	learning in teams.	online, on
Functional requirements implementation (using Unity, Visual	4		Teams
studio or other)	4		platform.
Functional Testing. Homework/Project evaluation	1		
Graphical components in web pages (XML, SVG, Flash, WebGL,	2		
Three.js)	2		

Bibliography

- Mark Segal, Kurt Akeley, The OpenGL R Graphics System: A Specification, Version 4.6, Core Profile, May 14. 2018.
- 2. Hussain Frahaan, Learn OpenGL, Packt Publishing, 2018
- 3. David Wolff, OpenGL 4 Shading Language cookbook, third Edition, Pack Publishing, 2018
- 4. Graham Sellers, Richard S. Wright, Nicholas Haemel, OpenGL SuperBible Seventh Edition Comprehensive Tutorial and Reference, Ed. Addison-Wesley, 2016, ISBN-13: 978-0672337475
- 5. Dave Shreiner, Graham Sellers , John M. Kessenich, Bill M. Licea-Kane, OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.3 (8th Edition) , 2013
- 6. WebGL Docs, https://registry.khronos.org/webgl/specs/latest/2.0/, ultima actualizare 6 august 2022
- 7. ThreeJS Docs, https://threejs.org/docs/, ultima accesare: septembrie 2022
- 8. Unity Manual, https://docs.unity3d.com/Manual/index.html, ultima accesare: septembrie 2022
- 9. Unity VR Documentation, https://learn.unity.com/course/create-with-vr, ultima actualizare 16 iunie 2022.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The graduated attendees should be able to generate a representative animation for the functionality of a designed small scale application, similar to desktop games or web based graphics, using dedicated libraries and tools.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
---------------	---------------------	--------------------	---------------------------

Course	Assessment of knowledge through a test based on the knowledge gained following participation in the course	Written exam / online exam using Teams	30%	
Seminar	-	-	-	
Laboratory	-	-	-	
Project	Examination of the skills and knowledge acquired through the participation in the laboratory. Projects or homeworks presentation	Practical presentation or online presentation using Teams	70%	
Minimum standard of performance: Written exam rank >= 5 and practical presentation rank >= 5				

Date of filling in:		Title Firstname NAME	Signature
15.03.2023	Course	Lecturer Eng. Iulia Adina ŞTEFAN, PhD	
	Applications	Eng. Nicolae Viorel COSTEA	

Date of approval by the Department Board	Head of Departament Prof.dr.ing. Honoriu VĂLEAN
Date of approval by the Faculty Council	Dean Prof.dr.ing. Liviu Cristian MICLEA