Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Code	56.10

2. Data about the subject

2.1 Subject name		Estimators in control of dynamic systems					
2.2 Course responsible,	/lecturer		Zsófia Lendek, Zsofia.lendek@aut.utcluj.ro				
2.3 Teachers in charge of applications		Zsófia Lendek, Zsofia.lendek@aut.utcluj.ro					
2.4 Year of study	4	2.5 Semest	er	2	2.6 Assessment (E/C/V)	С	
2.7 Type of subject		, DID	– in t	he field, DS – specialty, DC – complementary	DS		
		– compulsory	, DO	P – ele	ective, FAC – optional	DO	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar		Laboratory	Project	1
3.2 Number of hours per semester	42	of which:	course	28	Seminar		Laboratory	Project	14
3.3 Individual study									
(a) Manual, lecture material and notes, bibliography								10	
(b) Supplementary study in the library, online and in the field									20
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								47	
(d) Tutoring								3	
(e) Exams and tests								3	
(f) Other activities:									
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 83									
3.5 Total hours per semester (3.2+3.4) 125									
3.6 Number of credit points 5									

4. Pre-requisites (where appropriate)

4.1 Curriculum	Numerical calculus, analysis, linear algebra, differential equations, control			
	engineering			
4.2 Competence	Numerical calculus, analysis, linear algebra, differential equations, control			
	engineering, Matlab			

5. Requirements (where appropriate)

5.1. For the course	Attending at least 7 lectures is compulsory.
5.2. For the applications	Presence and successfully completing the project are compulsory

6. Specific competences

6.1 Professional competences	C1
	Using knowledge of mathematics, physics, mechanical engineering,
	chemistry, electrical and electronic engineering in systems engineering
	C3
	Using basics of control engineering, methods of modeling, simulation,
	identification and analysis of processes, computer assisted design techniques.
6.2 Cross competences	

7. Course objectives

7.1 General objective	 Estimation problems in control engineering Design of commonly used observers
7.2 Specific objectives	 Formulating an estimation problem Observability analysis Methods used for state estimation for a linear system

8. Contents

8. contents	Nohours	Tooching mathada	Notos				
8.1 Lecture	No.hours	Teaching methods	Notes				
Introduction. State-space description of dynamical systems.							
Formulating an estimation problem. Soft sensors. Case studies:	6						
electromechanical systems, 3D crane, inverted pendulum,							
robotic manipulators, quadcopters.							
Observers for linear systems. Luenberger observers in discrete							
and continuous time. Convergence of the estimated values to	4						
the real ones. Limitations. Case studies: experiments from the		Exposition					
Rotary package (Quanser).		Questions	Possibly				
Linear regression. Least squares methods. The effect of noise.	2	Discussions with	online on				
Case study: 3D crane.		students	Teams				
Noises and disturbances. Kalman filters in continuous and		Proofs					
discrete time. Analysis. Estimation with bounded inputs and	6	Proois					
states. Prediction and smoothing. Limitations. Case studies:							
sensor fusion for mobile robots.							
Sensor and actuator faults. Fault detection. Case studies:	4						
electromechanical systems.							
Observers design for control. The separation principle. Case	6						
studies: robotic systems.							
Bibliography							
1.Beyond the Kalman filter : particle filters for tracking applicatio	ns, Branko R	istic, Sanjeev Arulampal	am, Neil				
Gordon, Artech House, 2003							
2.Modern control design : with MATLAB and SIMULINK, Ashish To	-						
3. Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models, Zsofia Lendek, Thierry Marie							
Guerra, Robert Babuska, Bart De Schutter, Springer, 2011							
4.Optimal State Estimation: Kalman, H-infinity, and Nonlinear Ap	proaches, Da	in Simon, Wiley, 2006					
5. Lecture notes available online at lendek.net/teaching	1						
8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes				
State-space representation of linear systems. Examples.		Implementation and					
Variables and parameters that need to be estimated.	2	analysis.	Attendance				
Applications.		anarysis.	mandatory.				
Luenberger observers. Applications.	3						
Linear regression. Applications.	-		Matlab will				
	2	Literature study,	-				
Kalman filters in continuous and discrete time. Prediction and		implementing	Matlab will				
smoothing. Extended Kalman filters. Applications.	2 4	implementing methods or	Matlab will be used.				
smoothing. Extended Kalman filters. Applications.	4	implementing methods or applications, report	Matlab will be used. Possibly				
		implementing methods or	Matlab will be used. Possibly online on				
smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection.	4	implementing methods or applications, report	Matlab will be used. Possibly online on				
smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection. Applications.	4	implementing methods or applications, report writing	Matlab will be used. Possibly online on Teams				
smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection. Applications. Bibliography	4	implementing methods or applications, report writing	Matlab will be used. Possibly online on Teams				
smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection. Applications. Bibliography 1.Beyond the Kalman filter : particle filters for tracking application	4 3 ns, Branko R	implementing methods or applications, report writing istic, Sanjeev Arulampal	Matlab will be used. Possibly online on Teams				
smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection. Applications. Bibliography 1.Beyond the Kalman filter : particle filters for tracking applicatio Gordon, Artech House, 2003	4 3 ns, Branko R ewari, Wiley,	implementing methods or applications, report writing istic, Sanjeev Arulampal 2002	Matlab will be used. Possibly online on Teams am, Neil				
 smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection. Applications. Bibliography 1.Beyond the Kalman filter : particle filters for tracking applicatio Gordon, Artech House, 2003 2.Modern control design : with MATLAB and SIMULINK, Ashish Topication 	4 3 ns, Branko R ewari, Wiley,	implementing methods or applications, report writing istic, Sanjeev Arulampal 2002	Matlab will be used. Possibly online on Teams am, Neil				
 smoothing. Extended Kalman filters. Applications. Sensor and actuator faults. Observer design for fault detection. Applications. Bibliography 1.Beyond the Kalman filter : particle filters for tracking application Gordon, Artech House, 2003 2.Modern control design : with MATLAB and SIMULINK, Ashish To 3.Stability analysis and nonlinear observer design using Takagi-Su 	4 3 ns, Branko R ewari, Wiley, ugeno fuzzy r	implementing methods or applications, report writing istic, Sanjeev Arulampal 2002 nodels, Zsofia Lendek, T	Matlab will be used. Possibly online on Teams am, Neil				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Since in general not all variables can be measured, observers need to be employed. The methods taught at this course represent the basis in this subject. Thus, the students will be capable to recognize if an observer is necessary, formulate the estimation problem, to analyse the problem, determine the methods that can be used to solve it and interpret the results.

The knowledge acquired can be applied both in the academic community and in industry (state-feedback control, optimization of industrial processes)

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Level of understanding of the material	Exam	1
Seminar			
Laboratory			
Project	Implementation, analysis, report, discussion	Validation during the semester	
Minimum standar	d of performance: project successfully comp	bleted and final grade >=5	•

Date of filling in:		Title Firstname NAME	Signature
21.03.2023	Course	Prof dr ing Zsófia Lendek	
	Aplications	Prof dr ing Zsófia Lendek	

Date of approval by the Department Board

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA