Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Discipline code	49.00

2. Data about the subject

2.1 Subject name		Relia	bilit	y and	d diagnosis	
2.2 Course responsible/led	turer		Ass	oc. p	rof. dipl. eng. Enyedi Szilárd , PhD - Szilard.Enyedi@aut.utc	luj.ro
2.3 Teachers in charge of a	applic	ations	Ass	oc. p	rof. dipl. eng. Stan Ovidiu, PhD - Ovidiu.Stan@aut.utcluj.ro	
2.4 Year of study	4	2.5 Semest	er	1	2.6 Assessment (E/C/V)	Е
2.7 Type of subject	DF – j	fundamental	, DID	– in t	he field, DS – specialty, DC – complementary	DS
2.7 Type of subject	DOB -	– compulsory	, DO	P – el	ective, FAC – optional	DOB

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblio	graphy							24
(b) Supplementary study in t	he libr	ary, online	and in t	he fie	eld					20
(c) Preparation for seminars/	'labora	atory work	s, home	vork,	reports, po	ortfol	ios, essays			20
(d) Tutoring										2
(e) Exams and tests										3
(f) Other activities:										0
					•					

3.4 Total hours of individual study (sum of (3.3(a)3.3(f)))	69
3.5 Total hours per semester (3.2+3.4)	125
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

	,
4.1 Curriculum	Systems theory basics; Knowledge of digital circuits; Notions of programming
	languages and techniques.
4.2 Competence	Identification of techniques, principles, appropriate methods and applying
	mathematics, focusing on numerical calculation methods in order to solve
	common problems in engineering systems.

5. Requirements (where appropriate)

5.1. For the course	Course attendance is compulsory.
E 2 For the applications	Laboratory and project attendance is compulsory; Preliminary reading for
5.2. For the applications	laboratories is indicated.

6. Specific competences

	C4 – Design, implementation, testing, operation and maintenance of systems with generic and dedicated equipment, including computer networks for control engineering and applied informatics.
6.1 Professional competences	
	Evaluation through monitoring, diagnosis, analysis of experimental data, in
	accordance with specific standards of performance of the design,
	implementation, testing, validation, operation and maintenance of

	equipment and computer networks activities when used for automatic control and informatics applications.
6.2 Cross competences	N/A

7. Course objectives

7.1 General objective	Preparation for the combined use of knowledge about reliability analysis, process diagnosis, generation of test vectors and implementing programs test applications.
7.2 Specific objectives	Development of the capacity for the use of process diagnosis functions, techniques for digital systems testing, the use of specialized testing and evaluating software for operational safety programs.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction to reliability and diagnosis.	2		
Basic reliability notions: indicators, mathematical models.	2		
Quality engineering elements: the use of ISO 9000 and 14000 standards.	2		
Introduction to testing; testing techniques; fault classification.	2		
Test vector generation; test set minimization.	2		
Design for testability; scan methods; the IEEE 1149.1 standard.	2	Presentation and	
Built-In Self-Test; BIST techniques.	2	reading from course	
Memory testing; memory categories; testing techniques.	2	notes and references,	
Testing methods (in-circuit, functional. Current, memories, microprocessors).	2	questions and answers face-to-face	
Fault-tolerant systems; indicators; redundancy.	2	and online, case	
Software testing techniques: runtime environment modeling, test scenario selection, test execution and results evaluation.	2	studies.	
Safety notions; reliability vs safety; risk analysis; integrity levels; safe architectures.	2		
Control systems diagnosis basics: methods, electrical and electronic systems diagnosis.	2		
Reliability and diagnosis of emerging technologies.	2		

Bibliography

- 1. Abramovici, M., Breuer, M., Friedman, A., *Digital System Testing and Testable Design*, Computer Science press, 1990.
- 2. Gulati, Ramesh, Maintenance and Reliability Best Practices, Industrial Press, 2020.
- 3. Kishor S. T., Andrea B., *Reliability and Availability Engineering: Modeling, Analysis, and Applications*, Cambridge University Press, 2017.
- 4. Israel Korean, C. Mani Krishna, Fault-tolerant systems, Elsevier, 2007.
- 5. Mostafa Abd-El-Barr, *Design and analysis of reliable and fault-tolerant computer systems*, Imperial College Press, 2006.

8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Reliability Indicators (I).	2		
Reliability Indicators (II).	2		
Reliability of an electric device.	2	Documentation	
Batch testing. ISO 9000 Standards Family.	2	reading,	
Circuit simulation.	2	presentation and	
Single Stuck Line Faults (SSL).	2	exemplification,	
Fault Collapsing. Minimal Test Set.	2	individual exercises	
Minimal test set of a circuit with logic gates.	2	on paper and on the	
Fault Simulation.	2	computer, problem	
Design of a logic circuit using integrated circuits with simple	2	solving within a	
gates and a microcontroller.	2	team.	
Development and implementation of an algorithm with the	2		
purpose of verifying the previously designed logic circuit.	2		

Fault simulation of the circuits made in the previous lab.	2
The D Algorithm.	2
Boolean Difference.	2

Bibliography

- 1. Abramovici, M., Breuer, M., Friedman, A., *Digital System Testing and Testable Design*, Computer Science press, 1990.
- 2. Gulati, Ramesh, Maintenance and Reliability Best Practices, Industrial Press, 2020.
- 3. Kishor S. T., Andrea B., *Reliability and Availability Engineering: Modeling, Analysis, and Applications*, Cambridge University Press, 2017.
- 4. Israel Korean, C. Mani Krishna, Fault-tolerant systems, Elsevier, 2007.
- 5. Mostafa Abd-El-Barr, *Design and analysis of reliable and fault-tolerant computer systems*, Imperial College Press, 2006.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Continual adaptation of the material to the requirements of potential employers and to the feedback from hired graduates.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Questions from the material presented at the course.	Written exam / online exam using Teams/Moodle	90%
Laboratory	Theoretical and practical questions from the material presented at the applications.	Written/online laboratory project / colloquium using Teams	10%

Minimum standard of performance:

Grade G>=5, G=0,9*E+0,1*C, where E= exam, C=colloquium/project.

Passing requirements: E≥5 and C≥5

Date of filling in:		Title First name NAME	Signature
22.03.2023	Course	Assoc. prof. dipl. eng. Szilárd ENYEDI, PhD	
	Applications	Assoc. prof. dipl. eng. Ovidiu STAN, PhD	

Date of approval by the Department Board	Head of Department Prof. dipl. eng. Honoriu VĂLEAN, PhD
Date of approval by the Faculty Council	Dean Prof. dipl. eng. Liviu Cristian MICLEA, PhD