SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	2 Faculty Faculty of Automation and Computer Science	
1.3	Department	Automation
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Automation and Applied Informatics (in English)
1.7	Form of education	Full time
1.8	Subject code	28.00

2. Data about the subject

2.1	Subject name			Mechanical Engineering			
2.2	2 Subject area			Mechanical Engineering			
2.3	Course responsible/lecturer			S.I.dr.ing. Ciprian-Radu RAD - <u>ciprian.rad@mdm.utcluj.ro</u>			
2.4	2.4 Teachers in charge of seminars			S.I.dr.ing. Ciprian	-Radu RA	AD - <u>ciprian.rad@mdm.u</u> t	tcluj.ro
2.5 Year of study 2 2.6 Semester 4		2.7 Assessment	С	2.8 Subject category	DID DI		

3. Estimated total time

3.1 Number of hours per week	4	3.2 of w	hich, course:	2	3.3 applications:	2
3.4 Total hours in the curriculum	100	3.5 of w	hich, course:	28	3.6 applications:	28
Individual study			hours			
Manual, lecture material and notes	s, bibliogr	raphy				10
Supplementary study in the library, online and in the field			10			
Preparation for seminars/laboratory works, homework, reports, portfolios, essays			18			
Tutoring			3			
Exams and tests				3		
Other activities			0			
3.7 Total hours of individual study 44						

5.7	rotar nours of marviadal stady	
3.8	Total hours per semester	100
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Physics, Mathematics, Informatics
12	Competence	Mathematics, Physics, Informatics, Measurement Techniques,
4.2		Technical Drawing

5. Requirements (where appropriate)

_	5.1 For the course	Face to face: video projector, blackboard with white and colored
5	For the course	chalk, whiteboard with colored markers.

			Face to face: video projector, blackboard with white and colored
5	.2	For the applications	chalk, whiteboard with colored markers, hands on sessions on
			representative equipment from laboratory.

6. Specific competences

Professional competences	C1 - Operating with basic Mathematical and Physical knowledge, Measurement Techniques, Technical Drawing, Mechanical Engineering, Chemistry and Electronics in the field of Automation and Applied Informatics (4 credits).
Cross competences	CT2 - Identify roles and responsibilities in an interdisciplinary team, making decisions and assigning tasks, applying techniques and effective work relationships within the team.

7. Discipline objectives (as results from the *key competences gained*)

		• To know the structure, operation, and the bases of design of
		mobile mechanical systems that can be found in the
		structure of mechatronic systems, and which integrates
		mechanical components, electrical, electronics and
7.1	General objective	information technology.
		• To know the main types of mobile mechanical systems
		(mechanisms), the main problems related to their study, the
		terminology, and the dedicated technical drawing language
		and the specific aided design methods.
		• To communicate effectively in writing and orally with
		specialists from the field of mechanical engineering.
		• To use methods and systems for measuring functional
		parameters of various mobile mechanical systems.
		• To use mathematical concepts and the suitable methods and
		software packages to simulate various rigid and mobile
7.2	Specific objectives	mechanical systems.
		• To participate and apply the obtained knowledge in
		interdisciplinary research and design teams.
		• To analyze and interpret experimental data from the field of
		mechanical engineering.
		• To understand and to critically analyze technical solutions
		from the field of mechanical engineering.

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
C1. Introduction to Mechanical Engineering. Hardware structure		
of mechatronic systems. The role of mechanisms and mechanical		
transmissions in their structure (2 hours)		
C2. Structural analysis of planar mechanisms – Part 1 (2 hours)		
C3. Structural analysis of planar mechanisms – Part 2 (2 hours)		
C4. Kinematic analysis of planar mechanisms (2 hours)]	
C5. Static force analysis of planar mechanisms (2 hours)	Free exposure at	
C6. Dynamic force analysis of planar mechanisms (2 hours)	blackboard	
C7. Introduction to mechanical engineering design (2 hours)	combined with multimedia	-
C8. Spur gear design (2 hours)	presentations	
C9. Analysis and synthesis of gear mechanisms – Part 1 (2 hours))	presentations	
C10. Analysis and synthesis of gear mechanisms – Part 2 (2 hours))		
C11. Analysis and synthesis of cam mechanisms (2 hours)		
C12. The balancing of mechanisms and machines (2 hours)		
C13. Mechanisms for industrial robots (2 hours)]	
C14. Mechanical engineering basics for pneumatics (2 hours)		
Bibliography		

[1] Robert L. Norton, Design of Machinery: An Introduction to The Synthesis and Analysis of Mechanisms and Machines, Fifth Edition, McGraw Hill, 2011.

[2] Robert L. Norton, Machine Design: An Integrated Approach, Fifth Edition, Prentice Hall, 2011.

[3] David H. Myszka, Machines & Mechanisms: Applied Kinematic Analysis, 4th Edition, Pearson, 2011.

[4] Eric Constants, Karl B. Dyer, Introduction to Mechanism design with computer applications, 1st edition, CRC Press, 2018.

[5] Antonio Simón Mata et al., Fundamentals of Machine Theory and Mechanisms, Springer, 2018.

[6] Ye Zhonghe, Lan Zhaohui, M.R. Smith, Mechanisms and Machine Theory, Higher Education Press, 2001.

[7] Cyrus Raoufi, Design of Mechanism with SolidWorks Motion Analysis and MATLAB/Simscape, KYRA Engineering Serices Inc., Canada, 2019.

[8] John J. Uicker, Jr. et al., Theory of Machines and Mechanisms, Fifth Edition, Oxford University Press, 2016.

[9] Calin Rusu, Mecanisme, U.T. Press, Cluj-Napoca, 2021.

[10] V. Handra-Luca, Organe de mașini și mecanisme, Editura didactică și pedagogică București, 1975.
[11] Voinea, R., ş.a., Introducere în mecanica solidului cu aplicații în inginerie, Ed.Academiei, București, 1985.

[12] Szekely, E., Dali, A., Mecanisme, Ed.UT Pres, Cluj-Napoca, 1993.

8.2. Applications/Seminars	Teaching methods	Notes
S1. The role of mechanisms and mechanical transmissions in the		
structure of mechatronic systems. Examples (2 hours)		
S2-S3. Structural analysis of the mechanisms. Kinematic elements,		
kinematic joints, kinematic chains, mechanisms. Examples, specific		

symbols used for representation in the kinematic schemes.		
Substituting mechanisms and mobility (to be used and facilities for		
demonstrations existing in the labs of the department) (4 hours)		
S4. Kinematic analysis of the mechanisms. Vectorial and analytical		
methods (2 hours)		
S5. Calculation of the reaction forces in the kinematic joints and		
the power of the motors used to drive the mechanism (2 hours)		
S6. Determination of center of mass and moments of inertia for		
various kinematic elements found in planar mechanisms (2 hours)		
S6. Gear mechanisms (gearings). Gear trains (to be used the		
experimental setups). Structural and kinematic analysis. (2 hours)		
S7. Project theme: Gear box based on a spur gear (an elementary		
gearing) (2 hours)		
Input data: Power to be transmitted; Speed of the driving gear;		
Transmission ratio.	Free exposure at	
Parameters to be calculated: Geometrical elements of the gears	blackboard	
and the contact ratio of the gearing; The dimensions of the shafts	combined with	-
and the bearings.	multimedia	
Graphical documentation: The assembly scheme of the gear box	presentations	
and the execution draw for a shaft.		
S8-S10. Gear mechanisms (gearings). Gear trains (to be used the		
experimental setups). Structural and kinematic analysis.		
Approaches related on the semester project (6 hours)		
S11. Virtual prototyping and rapid prototyping of planar		
mechanisms based on mechatronic intelligent modules and		
specialized software (2 hours)		
S12. Balancing the mechanisms and machines. Applications based		
on the laboratory setup (2 hours)		
S13. Project evaluation (2 hours)		
S14. Project evaluation (2 hours)		
D'hitsessel		

Bibliography

[1] Robert L. Norton, Design of Machinery: An Introduction to The Synthesis and Analysis of Mechanisms and Machines, Fifth Edition, McGraw Hill, 2011.

[2] Robert L. Norton, Machine Design: An Integrated Approach, Fifth Edition, Prentice Hall, 2011.

[3] David H. Myszka, Machines & Mechanisms: Applied Kinematic Analysis, 4th Edition, Pearson, 2011.

[4] Olimpiu Tatar, Elemente de inginerie mecanică : îndrumător de laborator. Partea 1, U.T.Press, Cluj-Napoca, 2013.

[5] Calin Rusu, Mecanisme, U.T. Press, Cluj-Napoca, 2021.

[6] Handra-Luca, V., Mecanisme, Ed.UT Pres, Cluj-Napoca, 1981.

[7] Handra-Luca, V., ş.a.– Introducere în teoria mecanismelor, Editura Dacia, Cluj-Napoca, vol. I-II, 1982, 1983.

[8] Maros, D., ş.a. – Mecanisme, Indrumător de lucrări, Lito. I.P.C-N, Cluj-Napoca, 1984.

[9] Szekely, E., Dali, A., Mecanisme, Ed.UT Pres, Cluj-Napoca, 1993.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course curriculum exists in universities and faculties in the country and abroad. Its content is in conjunction with the expectations of community representatives, professional associations, and employers in the field of Automation and Applied Informatics.

By learning theoretical concepts and addressing practical aspects included in the discipline entitled Mechanical Engineering, students acquire a consistent stock of knowledge, in accordance with partial competencies required for possible occupations provided in Grid 1 – RNCIS.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
			final grade		
10.4 Course	The course ends with a face-to-face exam (multiple choice and short answer questions test).	The mark is evaluated based on the score obtained at the face- to-face exam	50%		
	Mark: CM (from 1 to 10)				
10.5 Applications	Every student gets a mark for his seminary activity Mark: SM (from 1 to 10)	The mark is evaluated based on the end-of-semester project	50%		
10.6 Minimum standard of performance					
The final grade is calculated using the following formula: FM = 0.5·CM + 0.5·SM					
Mandatory condition to pass the exam: CM≥5; SM≥5;					

Date of filling in: 14.04.2023		Title Surname Name	Signature
	Lecturer	S.I.dr.ing. Ciprian-Radu RAD	
	Teachers in charge of application	S.I.dr.ing. Ciprian-Radu RAD	

Date of approval in the department

Head of department Prof.dr.ing. Honoriu VĂLEAN

Date of approval in the faculty

Dean Prof.dr.ing. Liviu MICLEA