Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	24.00

2. Data about the subject

2.1 Subject name	e Syst			em Theory I			
2.2 Course responsible/lec	cturer		Assist. Prof. Mirela Dobra – mirela.trusca@aut.utcluj.ro				
2.3 Teachers in charge of a	applic	ations	Assist. Prof. Mirela Dobra – mirela.trusca@aut.utcluj.ro				
2.4 Year of study	2	2.5 Semest	ster 2 2.6 Assessment (E/C/V)			E	
			DD				
2.7 Type of subject	DI – compulsory, DO – elective, Dfac – optional			DI			

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	3	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	70	of which:	course	42	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography							10			
(b) Supplementary study in the library, online and in the field								6		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring								14		
(e) Exams and tests								5		
(f) Other activities:							0			
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 55										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Mathematical analysis I (Differential calculus); Special mathematics (Complex analysis and transforms); Linear algebra and analytical geometry;
4.2 Competence	Physics, Electrotechnics, Analog and digital circuits; Process modeling.

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Applications are compulsory

6. Specific competences

6.1 Professional competences	C3.1 Identification of basic concepts of system theory, control engineering, of
	fundamental principles of modelling and simulation, as well as of process
	analysis methods in order to explain the basic problems of the field.
	C3.2 Explaining and interpreting some process automation problems through
	the application of automatic control fundamentals, of modelling,
	identification and simulation methods as well as of the computer aided
	design techniques.
	C3.3 Solving some types of control problems through: use of modelling
	methods and principles, development simulation scenarios, application of
	methods for the identification and analysis of processes (including
	technological processes) and systems.

6.2 Cross competences	N/A

7. Course objectives

7.1 General objective	 modelling Continuous Linear Time Invariant systems;
	- stability analysis of LTI systems;
	- time response analysis of LTI systems
	- negative feedback control systems
7.2 Specific objectives	- work with Matlab/Simulink
	- Simulation and testing the behavior of dynamic continuous, linear time-
	invariant systems
	- use analog components (computers) to test the behavior or LTI systems

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes				
Systems Theory: preliminaries; Introductory aspects; Systems		ŭ					
theory: brief history; Modern control systems examples	3						
Mathematical models of physical systems	3						
Physical systems determined by ordinary differential equations	3						
Laplace Transform; The weighting function and the transfer	2						
function	3						
Modelling the LTI systems by state space equations; State space	2	Comprehensive					
analysis	3	slides					
Stability of LTI systems. Stability criterions.	3	Blackboard					
Response of dynamic LTI systems to standard input signals	3	annotations Oriented discussions on the subject					
First order element; Second order element	3						
Negative feedback control systems	3	on the subject					
Algebra connection of negative feedback control systems.	3						
Sensitivity of negative feedback control systems	3						
Negative feedback control structures performances	3						
Steady state and transitory response performances	3						
The modes of LTI systems	3						
Bibliography 1. R. C. Dorf, R. Bishop, "Modern Control Systems", Addison-Wesl	ey, 2004;						
2. K. Ogata , "Modern Control Engineering", Prentice Hall, 1990.							
3. Benjamin Kuo, Matlab Tools for Control System Analysis and Design, 1995							
4. SKOGESTAD Sigurd, POSTLETHWAITE Ian, Multivariable feedback control : analysis and design, 1997.							
5. Golub, G. H., C.F. Van Loan, – Matrix computations, John Hopkins Univ. Press, Baltimore, 1984							
6. M. Hanganut, "Teoria sistemelor", Vol 2., UTCN 1996	Durant	4005					
7. Ionescu, V. – Teoria Sistemelor, Editura Didactică și Pedagogică			N .				
8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes				
Modeling dynamic systems using state space equations.	2						
Using Matlab to model the LTI systems.	2						
Response of dynamic LTI systems to standard input signals.	2						
Minimal form algorithm in Matlab.	2						
First and second order element behaviors to standard input	2						
signals.	2						
Response of dynamic LTI systems using Matlab.	2	Solving problems					
Performances and characteristics of first and second order	2	using Matlab					
systems.	2						
State space analysis.	2						
State space analysis: car suspensions model in Simulink.	2						
Internal and external stability of dynamic LTI systems.	2						
Negative feedback control structures. 2							
Root locus analysis.	2						
Control system analysis for the car suspension case.	2						

Sensitivity analysis using root locus in Matlab.	2						
Bibliography							
1. R. C. Dorf, R. Bishop, "Modern Control Systems", Addison-We	1. R. C. Dorf, R. Bishop, "Modern Control Systems", Addison-Wesley, 2004;						
2. K. Ogata , "Modern Control Engineering", Prentice Hall, 1990.).						
3. Benjamin Kuo, Matlab Tools for Control System Analysis and Design, 1995							
4. SKOGESTAD Sigurd, POSTLETHWAITE Ian, Multivariable feedback control : analysis and design, 1997.							
5. Golub, G. H., C.F. Van Loan, – Matrix computations, John Hopkins Univ. Press, Baltimore, 1984							
6. M. Hanganut, "Teoria sistemelor", Vol 2., UTCN 1996							
7. Ionescu, V. – Teoria Sistemelor, Editura Didactică și Pedagogică, București, 1985.							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Practical applications by examples

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Solution correctness	Written examination Face-to-face evaluation; on-line evaluation; Course assignments	80%
Seminar	N/A	N/A	0%
Laboratory	Solving problems using Matlab	Colloquium; Face-to-face evaluation; on-line evaluation	20%
Project	N/A	N/A	0%

Date of filling in:		Title Firstname NAME	Signature
20.03.2023	Course	Assist. Prof Mirela Dobra	
	Aplications	Assist. Prof Mirela Dobra	

Date of approval by the Department Board Automation Department Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council Computer Science and Automation Faculty Dean Prof.dr.ing. Liviu Cristian MICLEA