Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Course cod	18.00

2. Data about the subject

2.1 Subject name	ubject name Digit			yital Electronics		
2.2 Course responsible/lecturer			Sl.dr.ing. Gabriel Harja - Gabriel.Harja@aut.utcluj.ro			
2.3 Teachers in charge of applications Sl.dr.ing. Gabriel Harja - Gabriel.Harja@aut.utcluj.ro						
2.4 Year of study	2 2.5 Semest		ter	1	2.6 Assessment (E - Exam/C - colloquy/V - Verification)	E
DF – fundamental		tal, DD – in the field, DS – specialty, DC – complementary			DD	
2.7 Type of subject	DI – c	ompulsory, L	00 -	electi	ve, DFac – optional	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	2	3.3 Project	0
3.4 Number of hours per semester	56	of which:	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	28	3.6 Project	0
3.7 Individual study										
(a) Manual, lecture material	and n	otes, biblic	ography							23
(b) Supplementary study in the library, online and in the field					17					
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					17					
(d) Tutoring						6				
(e) Exams and tests					6					
(f) Other activities:					0					
3.8 Total hours of individual study	(sum c	of (3.7(a)3	3.7(f)))		69					
3.9 Total hours per semester (3.4+3	3.8)				125					
3.10 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Mathematical Analysis, Fundamentals of Electronic Circuits, Computer Programming
4.2 Competence	Basic electronics circuits, computer operating, differential equations

5. Requirements (where appropriate)

5.1. For the course	To be admitted to the assessment, a student must accumulate a minimum lecturer attendance of 70%.
5.2. For the applications	Presence at laboratory is conditioned by forward laboratory report sustain and analysis.

6. Specific competences

6.1 Professional competences	C2 – Operating with basic concepts of computer science, information technology and communication
	C2.1 – Describing the structure and operation of computer systems, communication networks and their applications in systems engineering using the concepts of programming languages, software environments and technologies, software engineering and specific tools (algorithms, diagrams, models, protocols, etc.).

	C2.2 – Well-grounded usage of concepts from informatics and computer technology in solving well defined problems of system engineering and in applications requiring the use of hardware or software in industrial systems or information technology systems.
	C2.3 – Solving common problems of systems engineering using the computer science and information technology concepts for the use of dedicated software tools and computer aided design (CAD) and for the adaptation and extension of these.
	C2.4 – Selection and evaluation, as a user, of dedicated software and computer aided design (CAD) tools for applications in systems engineering, computers, information technology and communications.
	 C2.5 – Using hardware - software code sign and software engineering as development methodologies, including the system level modelling. C3 The use of automation fundamentals, modeling methods, simulation, process identification and analysis, computer-aided design techniques.
	C3.4 – Evaluation of the performance of automatic systems, the strengths and weaknesses (SWOT analysis) of the projects, the consistency of the methods and theoretical foundations.
6.2 Cross competences	

7. Course objectives

_	i course objectives	
	7.1 General objective	Assimilation of knowledge about fundamental concepts of impulse technique, completion
		and operation of digital circuits, a semiconductor memory, reconfigurable circuits, and
		microcontrollers.
	7.2 Specific objectives	Design and completion schemes with digital circuits
		Design and completion of some application with microcontrollers

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
C1. Introductive notions. Definition of the pulse signal,			
parameters, impulse generation.	2		
C2. Switching regime of semiconductor devices.	2		
C3. Integrated logic circuits. Generalities, technical			
considerations, classification, evolution of integrated logic	2		
circuits. Classification of families of logic circuits.			
C4. Static parameters of logic circuits: the transfer			
characteristic, the noise margin, duty factor. Dynamic	2		
parameters: propagation delay time, power dissipation.			In case of
C5. TTL logic integrated circuits. TTL basic Gate, operating,	2	Slides presentation,	force
parameters.	Z	explanations and	majeure,
C6. Standard TTL series, parameters, interconnection rules.	2	demonstrations on whiteboard, discussions	courses will be held online on
Open collector TTL circuits, three states circuits (TSL).	Z		
C7. TTL circuits series: high speed TTL series (HTTL), low power			
TTL series (LTTL), Schottky TTL series (STTL, LSTTL), advanced	2	413643310113	MS Teams
Schottky series (ALS, AS).			platform
C8. Integrated MOS logic circuits. CMOS integrated inverter,	2		
static and dynamic parameters.	2		
C9. Series of CMOS circuits. Circuits for protection, buffering			
circuits, quality factor. Interconnection of integrated logic	2		
circuits.			
C10. Semiconductor memories. Overview, classifications. ROM	2		
Memories.	2		
C11-12. SRAM memories. DRAM memories.	4		
C13-14. Microcontrollers.	4		

Bibliography

- 1. I. Naşcu (2002): Digital circuits. Editura Mediamira, Cluj Napoca. The electronic version is made available to students in the first course.
- 2. Dadarlat V., Peculea A., (2006) Analog and digital circuits. Cluj Napoca
- 3. Ardelean I., și colectivul (1986): CMOS integrated circuits, E.T. Bucuresti.
- 4. Stojanov I (1987): From TTL gate to microprocessor. E.T. Bucuresti.
- 5. David J. Comer, Donald Corner (2003), Fundamentals of Electronic Circuit Design, Wiley
- 6. Anant Agarwal, Jefrey H. Lang (2005), Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann Publishers

8.2 App	plications (seminar/laboratory/project)*	No.hours	Teaching methods	Notes	
1	Basic concepts in microcontroller programming	2			
2	Digital inputs/outputs	2			
3	Digital inputs/outputs	2	Application		
4	BCD Display 7 Segments	2	implementation and		
5	Timer Modules	2	testing on laboratory	In case of	
6	Timer Modules - Interrupts		didactic stands. Application presenting, explanations and demonstrations on	force majeure, will be held online on MS Teams platform	
7	External Interrupts and Input Capture	2			
8	PWM modules	2			
9	Analog-Numeric Converter	2			
10	Basic Logic Circuits	2			
11	Memory circuits	2			
12	Open Collector Logic Circuits	2			
13	Astable circuits	2			
14	Optoelectronic Displays	2			
Dibligg	ranhy				

Bibliography

- 1. I. Naşcu, V. Dădârlat, S. Folea, (1996): Circuite numerice. Îndrumător de laborator. The electronic version is made available to students in the first course.
- 2. G.Harja, I. Naşcu, (2018): Circuite numerice. Îndrumător de laborator. The electronic version is made available to students in the first course.

*It will be specified, as appropriate: the subject of the seminars, the laboratory works, the subject and the stages of the project.

9. Bridging course contents with the expectations of the representatives of the community, professional associations, and employers in the field

The lectures and applications content were discussed with field experts. Over the years the course was favorably assessed by various rating agencies: National Council for Academic Evaluation and Accreditation (CNEAA), Romanian Agency for Quality Assurance in Higher Education (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Theory and problems questions	Written exam / online exam using MS Teams	60%			
10.5 Laboratory	Application and result presenting	Oral exam / online exam using MS Teams	40%			
-	-	-	-			
Minimum standard of performance: Development of a minimal set of applications using semiconductor memories, reconfigurable circuits, and microcontrollers.						

Date of filling in:		Title First name NAME	Signature
<u>27.03.2023</u>	Course	Sl.dr.ing. Gabriel HARJA	
	Applications	Sl.dr.ing. Gabriel HARJA	
		Drd.ing. Vasile DAN	
		Drd.ing. Vlăduț DOBRA	

Date of approval by the Department Board

Head of Department Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA