SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Research Masters
1.6	Program of study/Qualification	CYBER PHYSICAL SYSTEMS
1.7	Form of education	Full time
1.8	Subject code	16.10

2. Data about the subject

2.1	Subject name				Emerging Control Systems for Industry 5.0			
2.2	Subject area	a			Systems Engineerin	Systems Engineering		
2.2					Prof.Dr.Ing. Cristina	a I. Muresan		
2.2	Course responsible/lecturer				cristina.muresan@aut.utcluj.ro			
2.3	Taashara in sharra af saminara				Prof.Dr.Ing. Cristina I. Muresan			
2.5	Teachers in charge of seminars				cristina.muresan@aut.utcluj.ro			
2.4 ۱	ear of study	2	2.5 Semester	2	2.6 Assessment	E		
2.7 9	2.7 Subject Formative category					·	DA	
cate	category Optionality					DO		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laborator	1	3.3 Proiect	0
3.4 Total hours in the curriculum	42	of which	35	28	3.6 Seminar		3.6 Laborator	14	3.6 Proiect	0
3.7 Individual study:							L		L	
(a) Manual, lecture materia	al and	notes, bib	liograph	iy					2	3
(b) Supplementary study in the library, online and in the field						1	.0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						2	0			
(d) Tutoring							2			
(e) Exams and tests							3			
(f) Other activities						(0			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	System Theory I+II, Control Engineering I+II
4.2	Competence	Fundamental knowledge of automation

5. Requirements (where appropriate)

5.1	For the course	Bibliography reading for lectures
5.2	For the applications seminarului / laboratorului / proiectului	Laboratory classes are compulsory

6. Specific competences

	C4. Analysis, synthesis and implementation of advanced control startegies with practical
nal ces	applications C4.1 Performance criteria for advanced process control methods
Professional ompetence	C4.2 Use of interdisciplinary and multidisciplinary knowledge and information to
ess	integrate advanced process control methods in an industrial setting
Profession	C4.3 Creative use of principles and advanced methods to ensure safety, security and
S	employment of advanced process control methods
	C4.5 Development of professional or/and interdisciplinary research projects, while
	meeting quality, security and safety standards
S	Team work
s nce	Scientific communication of results
Cross peter	
Cross competences	
8	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	•	Introduction into basic concepts related to fractional order control, autotuning methods and event-based implementations
7.2	Specific objectives	•	Industry 5.0 concepts and modernization of control systems Emerging control methods Analysis and synthesis of fractional order control strategies Analysis and synthesis of auto-tuning methods Event-based implementation possibilities and advantages

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction: from Industry 1.0 towards Industry 5.0.		PPT	In case of
Industry 4.0 and cyber physical systems. Industry 5.0 and	1	presentations,	major force
cyber physical cognitive systems (CPGS). Modern control	4	open	classes will
systems.		discussions,	be held
Emerging control methods suitable for Industry 5.0. Basics	4	demonstration,	online using
of auto-tuning methods	4	case studies	Teams

Fractional order control systems: introduction, advantages,	4
tuning, implementation	-
Fractional order control systems and auto-tuning methods.	
A time domain approach. Implementation and validation on	4
CPGS	
Fractional order control systems and auto-tuning methods.	
A frequency domain approach. Implementation and	4
validation on CPGS	
Fractional order event-based control systems. Increasing	
the efficiency of control systems by reducing energy use	1
according to the sustainability standards sought by Industry	4
5.0.	
Industrialization of fractional order control systems. Case	1
studies	4

Bibliography

- 1. Monje, C.A.; Chen, Y.Q.; Vinagre, B.; Xue, D.; Feliu, V. Fractional Order Systems and Controls: Fundamentals and Applications; Springer: Berlin, Germany, 2010
- C. Copot, C.M. Ionescu, C.I. Muresan (2020), Image-Based and Fractional-Order Control for Mechatronic Systems. Theory and Applications with MATLAB[®], ISBN 978-3-03-042005-5, 978-3-03-042006-2, DOI: 10.1007/978-3-030-42006-2, Springer
- 3. Cristina I. Muresan, Robin De Keyser, Revisiting Ziegler–Nichols. A fractional order approach, ISA Transactions, 2022,DOI: 10.1016/j.isatra.2022.01.017
- I. Birs, I. Nascu, C. Ionescu, C. Muresan (2020), "Event-based fractional order PID control", Journal of Advanced Research, Volume 25, pp.191-203, DOI: 10.1016/j.jare.2020.06.024 BURNS Roland S., Advanced control engineering, 2004, Oxford
- 5. Vilanova, Ramón and Antonio Visioli. "PID control in the Third Millennium: lessons learned and new approaches." (2012).

8.2. Seminars /Laboratory/Project	Numbe r of hours	Teaching methods	Notes
Introduction into Industry 5.0 and analysis of modern control systems	2		
Implementation of standard auto-tuning methods. Case study: vertical take-off and landing	2	Practical use of dedicated	In case of major force
Analysis and implementation of fractional order control systems using various software tools (FOMCOM, NINTEGER, AFOPI, FLOreS). Matlab simulation. Case study: anesthesia control	2	equipment, case studies, demonstration, brainstorming	classes will be held online using Teams
Practical implementation and validation of fractional order control systems. Case study: vertical take-off and landing.	2		

Practical implementation and validation of fractional			
order control systems and auto-tuning methods. Case	2		
study: DC motor control.			
Practical implementation and validation of fractional			
order control systems and auto-tuning methods. Case	2		
study: vertical take-off and landing platform.			
Event-based implementation of fractional order			
controllers. Case study: vertical take-off and landing	2		
platform.			
	•	•	

Bibliography

- Tepljakov, Aleksei, et al. "FOMCON Toolbox for Modeling, Design and Implementation of Fractional-Order Control Systems." Applications in Control, De Gruyter, 2019, pp. 211–36, doi:10.1515/9783110571745-010.
- Lennart van Duist, Gijs van der Gugten, Daan Toten, Niranjan Saikumar, Hassan HosseinNia, FLOreS - Fractional order loop shaping MATLAB toolbox, IFAC-PapersOnLine, Volume 51, Issue 4, 2018, Pages 545-550, DOI: 10.1016/j.ifacol.2018.06.152.
- 3. QNET 2.0 VTOL Board for NI ELVIS, Student workbook, Quanser, Ontario, Canada, 2011
- 4. https://www.mathworks.com

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the lectures and laboratory classes corresponds to some of the newest approaches in control engineering. Selected case studies refer to emerging applications, ranging from aerodynamics to biomedical engineering. The content of the lectures and the laboratory classes has been discussed with companies in Romania.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	Evaluation of the acquired skills, activity within lectures	Written exam	50%				
10.5 Seminars /Laboratory/Project	Evaluation of the practical skills, attendance, activity within laboratory classes	Oral exam	50%				
10.6 Minimum standard of performance Exam grade >5, Laboratory grade>5							

Lecturer Teachers in	Prof. dr.ing. Cristina I.	Muresan	
Teachers in			
Teachers in charge of	Prof. dr.ing. Cristina I. Muresan		
application			
Date of approval in the Department of Automation		Head of department Prof.dr.ing. Honoriu Valea	n
Date of approval in the Faculty of Automation and Computer Science		Dean Prof.dr.ing. Liviu Miclea	
the Faculty of	Autom	Automation and Computer	-