SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Cyber-Physical Systems
1.7	Form of education	Full time
1.8	Subject code	14.00

2. Data about the subject

2.1	Subject name				Reinforcement Learning		
2.2	Course responsible/lecturer				Prof. dr. eng. Busoniu Lucian – <u>Lucian.Busoniu@aut.utcluj.ro</u>		
2.3	Teachers in charge of seminars				Prof. dr. eng. Busoni	u Lucian – <u>Lucian.Busoniu@a</u> u	ut.utcluj.ro
2.4 \	2.4 Year of study 2 2.5 Semester 1		2.6 Assessment		Exam		
2.7 9	2.7 Subject Formative category						DS
category Optionality						DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2	2	3.3	0	3.3	1	3.3	0
			Course		Seminar		Laborator		Proiect	
3.4 Total hours in the curriculum	42	of which	3.5	28	3.6	0	3.6	14	3.6	0
3.4 Total flours in the curriculant	42	Of Willeli	Course	20	Seminar	U	Laborator	14	Proiect	U
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography						2	26			
(b) Supplementary study in the library, online and in the field								9		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								9		
(d) Tutoring								1		
(e) Exams and tests								3		
(f) Other activities						- 1	LO			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8)										

4. Pre-requisites (where appropriate)

3.10 Number of credit points

4.1 Curriculum		Discrete-time systems, basics of probabilities and nonlinear systems, basics of optimization
4.2	Competence	Analytical and programming competencies

5. Requirements (where appropriate)

E 1	For the course	Attendance is not mandatory, but optional graded quizzes will be
3.1	roi tile codise	taken during the lectures

5.2	For the applications seminarului / laboratorului / proiectului	Lab solutions are mandatory and graded; each consists of Matlab/Python code and a report document
-----	--	---

6. Specific competences

Professional	C1 Analysis and solution of control system modelling and design problems using advanced mathematical knowledge and fundamental concepts from automatic systems theory	5
Cross	CT2 Managing roles, responsibilities and communication in a team, monitoring and controlling the activities carried out to effectively achieve objectives.	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The student will be able to choose and successfully apply a reinforcement learning method for a given nonlinear, possibly stochastic optimal control problem where the system model is unknown
7.2	Specific objectives	 The student will be able to: Formulate an optimal control problem in the Markov decision process (MDP) setting Characterize the optimal solution in the MDP setting Understand and apply exact dynamic programming and reinforcement learning methods Understand classical and deep-network-based function approximation Understand and apply approximate (classical and deep) reinforcement learning methods Given a new problem, be able to select an algorithm among exact, approximate, and deep reinforcement learning

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. The reinforcement learning problem	2	Presentation based	
2. The optimal solution	2	on videoprojector	
3. Dynamic programming	3	slides	
4. Classical reinforcement learning	3	Interactive	
5. Classical function approximation	3	discussions (questions,	
6. Approximate dynamic programming	3	exercises etc.)	

7. Approximate reinforcement learning		Lecture quizzes
8. Deep neural networks	3	
9. Deep value-based reinforcement learning	3	
10. Deep policy-gradient reinforcement learning	3	

Bibliography

- 1. "Reinforcement learning". Lecture notes in the form of slides.
- 2. L. Busoniu, R. Babuska, B. De Schutter, D. Ernst, Reinforcement Learning and Dynamic Programming Using Function Approximators, CRC Press, Automation and Control Engineering Series. April 2010.
- 3. D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 4th edition, 2017.
- 4. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Bradford, 2018, 2nd ed.

	Numbe		
8.2. Seminars /Laboratory/Project	r of	Teaching methods	Notes
	hours		
1. Dynamic programming: Q-value and policy iteration	3	Reminder about the	
2. Exact reinforcement learning: Q-learning	3	objective and method	
3. Approximate reinforcement learning	3	of each lab	
4. Deep neural networks	2	Method	
5. Deep reinforcement learning: deep Q-networks	3	implementation and	
		usage in Matlab or	
		Python	
		Interaction with	
		students and solution	
		grading	

Bibliography

- 1. "Reinforcement learning". Lecture notes in the form of slides.
- 2. L. Busoniu, R. Babuska, B. De Schutter, D. Ernst, Reinforcement Learning and Dynamic Programming Using Function Approximators, CRC Press, Automation and Control Engineering Series. April 2010.
- 3. D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 4th edition, 2017.
- 4. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Bradford, 2018, 2nd ed.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course provides control methods for systems that are insufficiently known and/or too complex (nonlinear, stochastic behavior) to apply classical control methods. These methods are relevant in advanced applications and research into the control of cyber-physical and other systems.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Correct solution of the proposed questions	Written exam	50%

10.5 Seminars /Laboratory/Project	Correct Matlab/Python usage for reinforcement learning	Solutions to the lab (code, report), electronically submitted	50%
10.6 Minimum standa	rd of performance		

Lecturer

Date of filling in:

16.03.2023

Original lab solutions (code and report) submitted; at least a rounded grade of 5 combined across the written test, lab solutions, and optional lecture quizzes.

Prof. dr. eng. Busoniu Lucian

Signature

Title Surname Name

	Teachers in charge of application	Prof. dr. eng. Busoniu	Lucian	
Date of approv	al in the Department of	Automation	Head of department Prof.dr.ing. Honoriu Valean	
Date of approval in the faculty of Automation and Computer Science			Dean Prof.dr.ing. Liviu Miclea	