SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation Department
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Research Master's
1.6	Program of study/Qualification	Cyber Physical Systems
1.7	Form of education	Full time
1.8	Subject code	9.00

2. Data about the subject

2.1	Subject name				Operating Systems and Networks in Cyber-Physical Systems		
2.2	Course responsible/lecturer				Assoc. prof. Enyedi Szilárd – Szilard.Enyedi@aut.utcluj.ro		
2.3	Teachers in charge of seminars				Assoc. prof. Enyedi Szilárd – Szilard.Enyedi@aut.utcluj.ro		
2.4 \	2.4 Year of study 1 2.5 Semester 2			2	2.6 Assessment	Е	
2.7 Subject Formative category			native category	,		DA	
category Optionality			onality			DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Projec	0
							,		·	-
3.4 Total hours in the curriculum	42	of which	3.5	28	3.6	0	3.6	14	3.6	0
5.4 Total flours in the curriculum	42		Course	20	Seminar	U	Laboratory	14	Projec	: '
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography							20			
(b) Supplementary study in the library, online and in the field							20			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							13			
(d) Tutoring							2			
(e) Exams and tests							3			
(f) Other activities							0			
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8)										

4. Pre-requisites (where appropriate)

3.10 Number of credit points

4.1	Curriculum	-
4.2	Competence	Computer usage basics.

5. Requirements (where appropriate)

5.1	For the course	-
5.2	For the applications	Laboratory attendance is mandatory.

6. Specific competences

C3

Innovative design of complex control systems, industrial networks and related hardware and software components, using domain-specific tools.

C3.1

Identification and description of advanced techniques, methods, methodologies and technologies for the analysis, design and implementation of computer applications based on programmable equipment and embedded systems.

C3.2

Professional competences

The use of concepts, principles, techniques, methodologies and advanced technologies of analysis, design and implementation of computer applications based on programmable equipment and embedded systems.

C3.3

The creation and use of new solutions appropriate to the context for the realization of IT application projects based on programmable equipment and embedded systems.

C 3.4

Comparative evaluation, including experimental, of solution alternatives for optimizing the performance of IT applications based on programmable equipment and embedded systems.

CIT

Cross competences

Demonstrating knowledge of the economic, ethical, legal and social context of exercising the profession for identifying tasks, planning activities and opting for responsible decisions, culminating in the conception, drafting and presentation of a scientific paper.

CT2

Clear and concise description of the activity flow, tasks and results in the domain, obtained either by assuming the role of leader / project head or as a member of a research team, thanks to: the ability to synthesize information in the field, global overall vision, communication skills with collaborators, the ability to define activities by stages.

7. Discipline objectives (as results from the key competences gained)

		The general objective of this course is transmitting the basic
7.1 General objective		notions with respect to installing and maintenance of operating
		systems and networks for CPS.
		The students will learn:
7 2	Specific objectives	methods to install, optimize and secure operating systems
7.2		in CPS;
		• techniques to configure and maintain networks for CPS.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Operating systems: Introduction.	2		
Systems at cloud, fog, edge levels.	2	Presentation and	
Servers, embedded computers and sensors.	2	reading from course notes and	
Operating systems variants for CPS.	2	references,	
Package management solutions for applications.	2	questions and	
Accounts and permissions.	2	answers face-to-	
Optimizing for performance or for low consumption.	2		

File systems.	2	face and online,
Accessing the network.	2	case studies.
Securing the collected, stored and transmitted data.	2	
Optimizing the network connection for easy access or for	2	
data protection.	2	
Automating operations with scripts.	2	
Availability of operating systems in CPS.	2	
Virtualization. Containerization.	2	

Bibliography

- 1. Nardelli, P.H.J. *Cyber-Physical Systems: Theory, Methodology, and Applications*; Wiley: IEEE Press: Hoboken, NJ, 2022; ISBN 9781119785194
- 2. Miclea, L.; Enyedi, S.; Vălean, H.; Fărcaș, F.; Damian, M. *Sisteme de operare și rețele pentru începători RH8+W2K*; U. T. Press: Cluj-Napoca, 2005; ISBN 9789736621550
- 3. Cyber-Physical System Design with Sensor Networking Technologies; Zeadally, S., Jabeur, N., Institution of Engineering and Technology, Eds.; IET control engineering series; The Institution of Engineering and Technology: London, United Kingdom, 2016; ISBN 9781849198240
- 4. *Cyber-Physical Systems. a Comprehensive Guide*; Sharma, N., Awasthi, L.K., Mangla, M., Sharma, K.P., Kumar, R., Eds.; Chapman & Hall/CRC cyber physical systems; First edition.; Chapman & Hall/CRC Press: Boca Raton, 2022; ISBN 9781032065489 9781032065465
- 5. Tanenbaum, A.S.; Feamster, N.; Wetherall, D. *Computer Networks*; Sixth edition, global edition.; Pearson: Harlow, United Kingdom, 2021; ISBN 9781292374062.

	Numbe	
8.2. Seminars /Laboratory/Project	r of	Teaching methods Notes
	hours	
Installing operating systems for CPS.	2	Documentation
Managing the application packages.	2	reading,
Permissions and access.	2	presentation
Configuring network access.	2	and
Configuring services.	2	exemplification,
Virtualization and containerization.	2	individual
		exercises on the
Optimizing and securing the system and the network	2	computer,
access.	2	problem solving
		within a team.

Bibliography

- 1. Nardelli, P.H.J. *Cyber-Physical Systems: Theory, Methodology, and Applications*; Wiley: IEEE Press: Hoboken, NJ, 2022; ISBN 9781119785194
- 2. Miclea, L.; Enyedi, S.; Vălean, H.; Fărcaș, F.; Damian, M. *Sisteme de operare și rețele pentru începători RH8+W2K*; U. T. Press: Cluj-Napoca, 2005; ISBN 9789736621550
- 3. Cyber-Physical System Design with Sensor Networking Technologies; Zeadally, S., Jabeur, N., Institution of Engineering and Technology, Eds.; IET control engineering series; The Institution of Engineering and Technology: London, United Kingdom, 2016; ISBN 9781849198240
- 4. *Cyber-Physical Systems. a Comprehensive Guide*; Sharma, N., Awasthi, L.K., Mangla, M., Sharma, K.P., Kumar, R., Eds.; Chapman & Hall/CRC cyber physical systems; First edition.; Chapman & Hall/CRC Press: Boca Raton, 2022; ISBN 9781032065489 9781032065465

5. Tanenbaum, A.S.; Feamster, N.; Wetherall, D. *Computer Networks*; Sixth edition, global edition.; Pearson: Harlow, United Kingdom, 2021; ISBN 9781292374062.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is essential in cyber-physical systems and familiarizes students with the most used operating systems and networks for CPS. The theoretical knowledge and the applications presented develop the students' ability to install, configure and manage the operating systems and networks found in computing systems in most engineering fields that have a tangent to cyber-physical systems. The material is continuously adapted to the requirements of potential employers and to the feedback of already employed graduates.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Questions from the material presented at the course.	Written exam / online exam using Teams/Moodle.	50%
10.5 Seminars /Laboratory/Project	Theoretical and practical questions from the material presented at the laboratories.	Written/online laboratory project / colloquium using Teams.	40%

10.6 Minimum standard of performance

Mark M>=5, M=0, 5*E+0,4*C+ 0,1*p, where E= exam (minimum result 50%), C=colloquium (minimum result 50%), p=course attendance.

Date of filling in:		Title Surname Name	Signature
16.03.2023	Lecturer	Assoc. prof. dipl. eng. Szilárd ENYEDI, PhD	
	Teachers in charge of	Assoc. prof. dipl. eng. Szilárd ENYEDI, PhD	
	applications		

Date of approval in the Automation Department	Head of department Prof. dipl. eng. Honoriu VĂLEAN, PhD
Date of approval in the Faculty of Automation and Computer Science	Dean Prof. dipl. eng. Liviu MICLEA, PhD