SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	System Engineering
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Cyber-physical systems
1.7	Form of education	Full time
1.8	Subject code	2.00

2. Data about the subject

2.1	Subject name				Evolutive systems		
2.2	Subject area				Science		
2.2	Course responsible/lecturer				Prof.dr.eng. Honoriu Vălean <u>Honoriu.Valean@aut.utcluj.ro</u>		
2.3	Teachers in charge of seminars				Lect.dr.eng. Dan Go	ta <u>Dan.Gota@aut.utcluj.ro</u>	
2.4 Year of study 1 2.5 Semester 1		1	2.6 Assessment		E		
2.7 Subject Formative category						DA, DI	
category Optionality							

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2	2	3.3 Sominars		3.3	1	3. Proi	3 oct	
2.4 Total hours in the curriculum	100	ofwhich	3.5	28	3.6		3.6	11	3.	6 6	
	100	or which	Course	20	Seminars		Laboratory	14	Proj	ect	
3.7 Individual study:											
(a) Manual, lecture material and notes, bibliography 2							2	8			
(b) Supplementary study in the library, online and in the field							1	0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	7			
(d) Tutoring											
(e) Exams and tests										(1)	3
(f) Other activities											
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8)100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	Mandatory attendance

6. Specific competences

		1.	Analysis and solution of modeling and design problems in the case of cyber-physical systems using knowledge of advanced mathematics and fundamental concepts of automation
		2.	Research, development and implementation of complex autonomous systems
a	es	3.	Use of advanced programming concepts to design and implement computer applications for
ion	enc		cyber-physical systems
essi	bete	4.	Design, develop and analyze control applications using advanced systems engineering
rof	du		strategies and knowledge
Ā	S	5.	Identifying, formulating and solving engineering problems that integrate physical,
			management, communication and informatics aspects
		6.	Selection and appropriate use of techniques, skills and tools to solve complex engineering
			problems and evaluate aspects related to operational safety and reliability of the solution
	SS	1.	Effective communication in transdisciplinary teams
S	nce	2.	Managing the roles, responsibilities and way of communication in a team, monitoring and
SOS	ete		controlling the activities carried out to effectively achieve the objectives
Ū	dm	3.	Identifying the needs and opportunities for continuous training, demonstrating critical and
	CO		innovative thinking skills and effectively utilizing learning resources for personal development.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The use of multidisciplinary knowledge in the field of systems engineering, computers and information technology in order to analyze, design, optimize, implement and test evolutionary mechanisms in the field of cyber-physical systems.
7.2	Specific objectives	 to design and implement solutions based on evolutionary algorithms to solve simple or complex optimization problems to solve problems specific to different engineering fields with the help of evolutionary algorithms

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes	
	of hours	methods	10100	
Evolutionary algorithms, evolutionary systems	2			
Genetic algorithms	2			
Swarm intelligence	2			
Artifficial immune system	2	Interactive		
Evolutionary algorithms in optimization problems	2	with examples		
Multimodal optimization	2	on the		
Multiobjective optization	2	projector. In		
Parallel and distributed evolutionary algorithms	2	case of force		
GA in NN and Fuzzy systems	2	on Teams		
GA in planning problems	2			
GA in transport problems	2			
Genetic programming	2			
GP in control systems	4			

Bibliography

- 1. X. Yu, M. Gen. Introduction to evolutionary algorythms. Springer, e-ISBN 978-1-84996-129-5
- 2. S.V. Sivanandam, S.V. Deepa. Introduction to genetic algorythms. Springer, ISBN 978-3-540-73189-4
- 3. D.E. Goldberg. Genetic Algorythms in search, optimization and machine learning. Addison-Wesley, ISBN 0-201-15767-5
- 4. M.Gen, R. Cheng. Genetic algorythms and engineering optimization. John Wiley & Sons.
- 5. K. Miettinen , P. Neittaanmaki , M. M. Makela , J. Pkriaux . Evolutionary algorithms in engineering and computer science. John Wiley & Sons. ISBN 0-471-99902-4
- 6. R. Poli, W.B. Langdon, N.F. McPhee, J.R. Koza. A field guide to genetic programming. https://www.researchgate.net/publication/216301261
- 7. J. Koza. Genetic programming IV. Kluwer academic publishers, ISBN: 1-4020-7446-8

	Numbe		
8.2. Seminars /Laboratory/Project	r of	Teaching methods	Notes
	hours		
GA implementation in Python	2		
SI implementation in Python	2		
AIS implementation in Python	2	Practical	
GA in optimization problems	2	applications on	
GA in transport peoblems	2	computer	
GA for controller sytnthesis	2		
Laboratory assessment	2		

Bibliography

- 1. X. Yu, M. Gen. Introduction to evolutionary algorythms. Springer, e-ISBN 978-1-84996-129-5
- 2. S.V. Sivanandam, S.V. Deepa. Introduction to genetic algorythms. Springer, ISBN 978-3-540-73189-4
- 3. D.E. Goldberg. Genetic Algorythms in search, optimization and machine learning. Addison-Wesley, ISBN 0-201-15767-5
- 4. M.Gen, R. Cheng. Genetic algorythms and engineering optimization. John Wiley & Sons.
- 5. K. Miettinen , P. Neittaanmaki , M. M. Makela , J. Pkriaux . Evolutionary algorithms in engineering and computer science. John Wiley & Sons. ISBN 0-471-99902-4
- 6. R. Poli, W.B. Langdon, N.F. McPhee, J.R. Koza. A field guide to genetic programming. https://www.researchgate.net/publication/216301261
- 7. J. Koza. Genetic programming IV. Kluwer academic publishers, ISBN: 1-4020-7446-8

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is essential in cyber-physical systems. The material is continuously adapted to the requirements of potential employers and to the feedback of already employed graduates.

10. Evaluation

	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the
Activity type	10.1 Assessment cittena	10.2 Assessment methods	final grade
10.4 Course	Assessment of knowledge using a test based on the knowledge acquired following participation in the course	Presentation of a physical or online project on Teams in case of force majeure	50%

10.5 Seminars /Laboratory/Project	Assessment of the practical skills and knowledge acquired during thw laboratory.	Practical or online Teams assessment (in case of force majeure).	50%		
10.6 Minimum standard of performance					
Exam grade >= 5 and	l lab assessment grade >= !	5			

Date of filling in:		Title Surname Name	Signature
16.03.2023.	Lecturer	Prof.dr.eng. Honoriu Vălean	
	Teachers in charge of	Lect.dr.ing. Dan Goța	
	application		

Date of approval in the Department of Automation

Head of department Prof.dr.ing. Honoriu Vălean

Date of approval in the Faculty of Automation and Computer Science

Dean Prof.dr.ing. Liviu Miclea